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Abstract

In a standard incomplete markets model a Ramsey planner chooses time-varying

paths of proportional capital and labor income taxes, lump-sum transfers (or taxes),

and government debt. Distortive taxes reduce the variance cross-sectionally and over

time of after-tax income, improving welfare for redistributive and insurance motives,

which we quantify with a new welfare-decomposition method. Optimal levels of cap-

ital and labor income taxes are roughly consistent with the prevailing ones in the

US; in the long run for a utilitarian planner and from the start for a planner that

disregards equality concerns. High initial capital taxes are an efficient way to pro-

vide redistribution and are used in proportion to the planners degree of inequality

aversion. Optimal debt dynamics is substantially affected by the planner’s degree of

inequality aversion. The welfare function is relatively flat with respect to movements

in long-run fiscal instruments. Ignoring transition or the dynamics of taxes over time

can be severely misleading.
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How should governments conduct fiscal policy in the presence of inequality and individ-

ual risk? This paper provides a quantitative answer to this question. We address it by

solving a Ramsey problem in a general equilibrium model with heterogenous agents and

uninsurable idiosyncratic labor income risk, originally developed and analyzed by Bewley

(1986), Imrohoruglu (1989), Huggett (1993), and Aiyagari (1994), and from now on referred

to as the standard incomplete markets (SIM) model.

The SIM model has been used extensively for positive analysis and been relatively suc-

cessful at matching some basic facts about inequality and income risk.1 In this environment

agents face uncertainty with respect to their individual labor productivity which they can-

not directly insure against (only a risk-free asset is available). Depending on their produc-

tivity realizations they make different savings choices which leads to endogenous inequality.

As a result, on top of the usual concern about not distorting agents decisions, a Ram-

sey planner has two additional objectives: to redistribute resources across agents, and to

provide insurance against their idiosyncratic productivity risk.

The study of optimal fiscal policy in the SIM model has focused mainly on the max-

imization of steady state welfare.2 In contrast, we allow policy to be time varying and

the welfare function to depend on the associated transition path. We calibrate the initial

steady state to replicate several aspects of the US economy; in particular the fiscal policy,

the distribution of wealth, earnings and income, and statistical properties of the individual

labor income process. The final steady state is, then, endogenously determined by the

optimal path of fiscal policy. As usual in the Ramsey literature, the planner finances an

exogenous stream of government expenditures with the following instruments: proportional

capital and labor income taxes and government debt. In contrast with most of the Ramsey

literature, however, we allow for (possibly negative) lump-sum transfers. This would render

the problem trivial in a representative-agent model, but that is not the case here.

Main findings Our main findings can be summarized as follows:

1. Optimal levels of capital and labor income taxes are roughly consistent with the pre-

vailing ones in the US; in the long run for a utilitarian planner and from the start for a

planner that disregards equality concerns. High initial capital taxes and higher overall

labor taxes are an efficient way to provide redistribution and are used in proportion to

the planners degree of inequality aversion.

1See, for instance, Domeij and Heathcote (2004) and Castañeda, Dı́az-Giménez and Ŕıos-Rull (2003),
Heathcote, Storesletten and Violante (2009), and Nardi and Fella (2017).

2See, for instance, Aiyagari and McGrattan (1998), Conesa, Kitao and Krueger (2009), and Nakajima
(2010). Notable exceptions are Krueger and Ludwig (2016) and Bakis, Kaymak and Poschke (2015) which
solve for the optimal once-and-for-all change in policy and account for transitory effects.
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2. Optimal debt dynamics is substantially affected by the planner’s degree of inequality

aversion. Increases in government debt crowd out capital and also have significant

general equilibrium price effects which, in turn, affect the provision of insurance and

redistribution.

3. The welfare function is relatively flat with respect to movements in long-run fiscal in-

struments. Our quantitative results show that the focus on long-run Ramsey policies in

the SIM model is misguided.3

4. Ignoring transition or the dynamics of taxes over time can be severely misleading. Our

contribution here is to quantify the importance of the transition both for the optimal

fiscal instruments and for the associated welfare gains.

Why use distortive taxes? Labor and capital income taxes are distortive, however,

they are used to provide insurance and redistribution. The only uncertainty that agents

face, in our environment, is with respect to their labor productivities.4 By taxing labor

income and rebating the extra revenue via lump-sum, the planner reduces the proportion of

the agents’ income that is uncertain and effectively provides insurance. On the other hand,

capital income is particularly unequal and by taxing it the planner reduces the proportion

of unequal income in total income and, this way, provides redistribution. To demonstrate

exactly how the optimal policy reacts to changes in uncertainty and inequality we provide

an analytic characterization of the solution to the Ramsey problem in a simple two-period

version of the SIM model. In particular, we show that a higher intertemporal elasticity

of substitution (Frisch elasticity) reduces the optimal capital (labor) income tax since it

aggravates the distortions associated with it. The effect of government debt is more subtle.

By decreasing debt the government crowds in capital which affects prices indirectly, in

particular increasing wages and reducing interest rates which leads to a more uncertain

but less unequal distribution of income. The optimal fiscal policy weighs all these effects

against one another.

The optimal policy For a utilitarian planner, our benchmark, we find that optimal

capital income taxes are front-loaded hitting the imposed upper bound of 100 percent for

53 years then decreases to 42 percent in the long run. Labor income taxes gradually increase

3By long-run we mean when the economy reaches the final stationary equilibrium. Part of the reason
welfare is flat with respect to long-run instruments is because the convergence to the final steady state
takes a very long time: about 200 years in our main results.

4Panousi and Reis (2012) and Evans (2014) focus instead on investment risk. One justification for our
focus on labor income risk is the fact that it is a bigger share of the total income for most agents in the
economy. The bottom 80 percent in the distribution of net worth have a share of labor income above 77
percent, in the 2007 SCF.
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from 28 towards a final level of 41 percent. In the initial stationary equilibrium the capital

and labor income taxes are set to their US counterparts: 36 and 28 percent respectively.

The ratio of lump-sum transfers to output is roughly doubled to about 16 percent and the

government accumulates assets initially only to then return to a level of debt-to-output

ratio of about 40 percent in the long run - over the optimal transition government assets

reach a level around 100 percent of GDP. Relative to keeping fiscal instruments at their

initial levels, this leads to a welfare gain equivalent to a permanent 13.9 percent increase

in consumption.

Welfare decomposition To disentangle the main forces behind the optimal policy, we

introduce a new procedure to decompose welfare gains5 into what comes from the reduction

of distortions to agent’s decisions, from redistribution (the reduction of ex-ante risk) and

from insurance (the reduction of ex-post risk). Applying this decomposition to our main

results we find that the average welfare gains of 13.9 percent associated with implementing

the optimal policy: (i) −4.8 percent come from an increase in distortions to agents’ deci-

sions; (ii) 16.8 percent come from redistribution; and (iii) 2.4 percent come from the extra

insurance provided by the fiscal policy. The optimal policy implies an overall increase of

capital and labor income taxes which distort agents’ savings and labor supply decisions

more leading aggregate resources to be less efficiently allocated. On the other hand, re-

bating the revenue of the higher taxes via lump-sum transfers, specially the higher capital

income taxes in the initial periods when the links with the individual ex-ante states are still

strong, decrease the proportion of the agents’ income associated with the ex-ante unequal

income and lead to the redistributional gains. Finally, the same mechanism acts to lower

the proportion of the agents’ income that is risky ex-post leading to the positive insurance

effect.

The role of redistribution We also use the welfare decomposition to consider a Ram-

sey planner that disregards equality concerns. The welfare gains are, then, equivalent to

a permanent 3.4 percent increase in consumption; 1.2 percent come from the reduction

in distortions and 2.2 from the provision of insurance. The much lower welfare gains are

consistent with the fact that most welfare gains in the benchmark come from redistribu-

tion. Optimal long-run capital and labor income taxes are, then, set to 45 and 29 percent,

respectively. Moreover, capital income taxes do not hit the upper bound, and instead move

immediately to a value close to the long-run level, which is indicative that this feature

of the benchmark results are mainly driven by the redistributive motive of the utilitarian

5The procedure is based on welfare decomposition used in Floden (2001) and Benabou (2002), but modified
to handle transitory effects.
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planner. Lump-sum transfers are front loaded and, therefore, the government accumulates

debt. This relaxes borrowing constraints and provides insurance via general equilibrium

price effects, but crowds out capital. In contrast to the benchmark result where such policy,

combined with the capital income taxes at the upper bound, would have a compounding

effect on the capital stock. Interestingly, in the benchmark results, instead of relaxing

borrowing constraints the optimal policy effectively reduces individual asset positions ac-

tually increasing the number of agents at and close to the borrowing constraint. We also

consider an experiment allowing the planner to expropriate asset positions in the first pe-

riod. Surprisingly, we find that even though 99 percent of asset holds are expropriated,

it is still optimal to keep high capital taxes: it is still beneficial for insurance purposes

and the downward distortions on capital accumulation are counteracted by the crowding

in of capital that result from the immense revenue obtained via the levy. Finally, we study

an alternative welfare function which allows us to directly control the degree of inequality

aversion of the planner, the weight put on equality concerns. The more the planner “cares”

about inequality the longer it keeps capital income taxes in the upper bound, the higher

the labor income taxes, and the lower the long-run debt-to-output ratio.

The importance of transition Disregarding transitory welfare effects in Ramsey prob-

lem can be severely misleading. To make this point we compute the stationary fiscal policy

that maximizes welfare in the final steady state and show that they are substantially differ-

ent from the optimal ones, since they ignore transitory effects and the costs associated with

accumulating capital and reducing government debt. Moreover, even when the transition is

taken under consideration, but taxes are restricted to being constant over time the results

are misleading, specially if one is interested in the long-run values for the fiscal instruments.

The optimal taxes in this case are close to the short-run values of the dynamic optimal ones

with capital income taxes, for instance, being set to 96 percent.

The role of market incompleteness To illustrate the role of market incompleteness

and highlight why and how our results differ from the ones in the complete-markets Ramsey

literature, we develop the following build-up. We start from the representative agent econ-

omy and sequentially introduce heterogeneity in initial assets; different (but constant and

certain) individual productivity levels; and, finally, uninsurable idiosyncratic productivity

risk which adds up to the SIM model. At each intermediate step, building on the work

of Werning (2007), we analytically characterize and then numerically compute the optimal

fiscal policy over transition identifying the effect of adding each feature. In particular, we

show that the planner chooses to keep capital income taxes at the upper bound in the initial

periods if there is asset heterogeneity, before reducing it to zero. Productivity heterogene-
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ity rationalizes positive (and virtually constant) labor income taxes. The key qualitative

difference of the solution once uninsurable idiosyncratic productivity risk is introduced is

that long-run capital income taxes are set to a positive level, which therefore must have to

do with the provision of insurance. One of the contributions of this paper is to quantify

the optimal long-run capital income taxes in the SIM model, which to our knowledge had

not been done before.

Related Literature

Assuming the existence of a Ramsey steady state, Aiyagari (1995) provides a rationale for

positive long-run capital income taxes in the SIM model.6 A recent study by Chen, Chien

and Yang (2018) revisits this result and shows that, with no bounds on government debt,

a Ramsey steady state may not exist.7 Relative to the environments in Aiyagari (1995)

and Chen, Chien and Yang (2018) the Ramsey planner in this paper has access to lump-

sum transfers as an additional instrument. Moreover, as in Aiyagari (1995) we require

government debt to be bounded. We view the contribution of this paper as quantifying the

gains from the optimal fiscal policy conditional on finitely many policy adjustments over

time, which essentially ensures the existence of the long-run steady state of the economy.

Importantly though, our computational algorithm does not rely on properties of the Ramsey

long-run steady state. Instead, we verify ex-post and independently of the solution method

whether theoretical properties of the Ramsey steady state hold. In particular, we find that

in the long-run steady state the modified golden rule does (approximately) hold.

Heathcote, Storesletten and Violante (2017) and Gottardi, Kajii and Nakajima (2015)

characterize analytically the optimal fiscal policy in stylized versions of the SIM model.

Their approaches lead to elegant and insightful closed-form solutions. However, the simpli-

fications in these models do not allow them to match some aspects of the data, in particular

the level of wealth inequality, which we find to be important for the determination of the

6Assuming the existence of a Ramsey steady state, he shows that the modified golden rule has to hold
at the optimum. At that associated interest rate aggregate savings of agents with precautionary motive
for savings would grow without bounds. Hence, Aiyagari (1995) concludes that a positive capital income
tax must be imposed. Complementarily, Chamley (2001) shows, in a partial equilibrium version of the
SIM model, that enough periods in the future every agent has the same probability of being in each of
the possible individual (asset/productivity) states. It is, therefore, Pareto improving to transfer from
the consumption-rich to the consumption-poor in the long run. If the correlation of asset holdings with
consumption is positive, this transfer can be achieved by a positive capital income tax rebated via lump-
sum.

7Chien and Wen (2017), in an analytically tractable version of the SIM model, show that the modified
golden rule holds if and only if the government can issue a sufficient amount of debt to enable households
to achieve full self-insurance.
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optimal tax system. The set of papers that tackle the issue of characterizing the optimal

transition in a quantitative framework with heterogeneity is limited.8 Acikgoz, Hagedorn,

Holter and Wang (2018) compute the long-run Ramsey optimal policy the SIM model,

assuming the existence of the Ramsey steady state, and solve backwards for the optimal

transition towards the initial steady state. We discuss the relationship between our results

and theirs in Section 4.3. Itskhoki and Moll (2018) study optimal dynamic development

policies in an incomplete markets model where heterogeneous producers are subject to fi-

nancial frictions. To solve for the optimal transition they adopt a similar approach to ours,

parametetrizing the time paths of tax instrument using exponential function of time, we

allow more flexibility using cubic splines. Nuño and Thomas (2016) use a novel continu-

ous time technique to solve for optimal monetary policy, including optimal transition, in a

version of the incomplete markets model with money. Ragot and Grand (2017) solve the

Ramsey problem in the SIM model with aggregate technology shocks by truncating the

histories of idiosyncratic shocks. Finally, Krueger and Ludwig (2018) provide a complete

analytical characterization of taxes on capital in a canonical overlapping generations model

with uninsurable idiosyncratic labor income risk for logarithmic utility. They find that

optimal transition is characterized by a constant aggregate saving rate, which can be im-

plemented with a proportional tax on capital also constant over time, but striclty increasing

in the extent of income risk.

We also contribute to the literature studying the nexus between government debt and

market incompleteness. In an influential paper Aiyagari and McGrattan (1998) compute

the level of debt-to-output that maximizes steady state welfare. Interestingly, they find

that the optimal level is very close to the actual level in the data at that time, around

67 percent. Their calibration procedure focuses on matching the properties of the labor

income process. Röhrs and Winter (2017) replicate their experiment with a calibration

that targets wealth inequality statistics and find the opposite result, i.e. the government

chooses to hold high levels of assets. Our calibration replicates wealth, income and earnings

inequality as well as the statistical properties of the labor income, hence we capture the

main forces determining the dynamics of government debt over optimal transition and in

the long run.

An extensive literature studies the Ramsey problem in complete-market economies with

heterogeneity. The most well known result for the deterministic subset of these economies is

8Though, there is a vast literature analyzing the optimal policy in the steady state - for instance Conesa,
Kitao and Krueger (2009) in an overlapping generations SIM model - or the optimal policy in the long
run including transitory effects - Krueger and Ludwig (2016) or Bakis, Kaymak and Poschke (2015).
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due to Judd (1985) and Chamley (1986): capital income taxes should converge to zero in the

long run. Among others, Jones, Manuelli and Rossi (1997) and Atkeson, Chari and Kehoe

(1999) show this result is robust to a relaxation of a number of assumptions. However, this

result has been challenged by Straub and Werning (2014) who show that it can indeed be

optimal to tax capital in the long run. Chari, Teles and Nicolini (2016) remove the Ramsey

planner’s incentive to expropriate initial capital holdings and show that, then, long-run

capital taxes should again be set to zero. The Ramsey planner in this paper also wants to

expropriate capital holdings, but for a different reason: not to mimic lump-sum taxes since

those are available, but to provide redistribution. Our experiment considering a planner

that does not want to provide redistribution is, in this sense, related to the one in Chari,

Teles and Nicolini (2016), though we still find optimal long-run capital taxes to be positive.

Werning (2007) characterizes optimal policy for this class of economies using the same set

of fiscal instruments that we use, in particular, allowing for lump-sum transfers or taxes.

Greulich, Laczó and Marcet (2016) characterize and compute Pareto improving capital and

labor income taxes in the same setup. In Section 7 we characterize analytically and provide

quantitative results for the optimal fiscal policy with complete markets in our environment

and link the results to these studies.

Dávila, Hong, Krusell and Ŕıos-Rull (2012) solve the problem of a planner in the SIM

model that is restricted to satisfy agents’ budget constraints, but is allowed to choose the

savings of each agent. If the consumption-poor’s share of labor income is higher than

the average, increasing the aggregate capital stock relative to the undistorted equilibrium

can improve welfare through its indirect effect on wages and interest rates. In our setup,

the Ramsey planner affects after tax prices directly to achieve the same goal. Section 1.4

contains a more detailed discussion of the relationship between our results and theirs.

The rest of the paper is organized as follows. Section 1 illustrates the main mechanism

behind our results in a two-period economy. Section 2 describes the infinite horizon model,

sets up the Ramsey problem and discusses our solution technique. Section 3 describes the

calibration. Section 4 presents the main results of the paper, the welfare decomposition

procedure. Section 5 considers a planner that disregards equality concerns and a utilitarian

planner that can choose to expropriate capital. Section 6 discusses the importance of

considering transitory effects. Section 7 presents the build-up from the complete market

economy results to our main results. Sections 8 and 9 provide results for alternative welfare

functions and calibrations and Section 10 concludes.
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1 Mechanism: Two-Period Economy

In the SIM model, there are two dimensions of heterogeneity: productivity and wealth.

Agents have different levels of productivity which follow an exogenous stochastic process.

In addition, markets are incomplete and only a risk-free asset exists. Therefore, the idiosyn-

cratic productivity risk cannot be diversified away. It follows that the history of shocks,

affects the amount of wealth accumulated by each agent and there is an endogenously de-

termined distribution of wealth. In a two-period economy, it is possible to evaluate how

each dimension of heterogeneity affects the optimal tax system. Since there is no previous

history of shocks, the initial wealth inequality can be set exogenously. In this section, we

characterize, under some assumptions about preferences, the optimal tax system when the

government has access to linear labor and capital income taxes, and lump-sum transfers.

The lump-sum transfers are allowed to be negative, and the government could finance all

necessary revenue with this non-distorvive instrument. In this section we explain why it

chooses to do otherwise. First, we assume agents have the same level of wealth but face

an idiosyncratic productivity shock - we call this the uncertainty economy . Then, we

shut down uncertainty and introduce ex-ante wealth inequality - this is referred to as the

inequality economy . Next we discuss the relationship with the infinite horizon problem.9

1.1 Uncertainty economy

Consider an economy with a measure one of ex-ante identical agents who live for two

periods. Suppose they have time-additive, von Neumann-Morgenstern utility functions.

Denote the period utility function by u (c, n) where c and n are the levels of consumption

and labor supplied. Assume u satisfies the usual conditions and denote the discount factor

by β. In the first period each agent is endowed with ω units of the consumption good

which can be either consumed or invested into a risk-free asset, a, and supplies n̄ units

of labor inelastically. In period 2, consumers receive income from the asset they saved in

period 1 and from labor. Labor is supplied endogenously by each agent in period 2 and the

individual labor productivity, e, is random and can take two values: eL with probability

π and eH > eL with probability 1 − π, with the normalization πeL + (1− π) eH = 1. Due

to the independence of shocks across consumers a law of large numbers operates so that

in period 2 the fraction of agents with eL is π and with eH is (1− π). Letting ni be the

labor supply of an agent with productivity ei, it follows that the aggregate labor supply is

N = πeLnL + (1− π) eHnH .

9The Online Appendix discusses the case which there is uncertainty and inequality.
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The planner needs to finance an expenditure of G in period 2. It has three instruments

available: labor and capital income taxes, τn and τ k, and lump-sum transfers T which can

be positive or negative. Let w be the wage rate and r the interest rate. The total period 2

income of an agent with productivity ei is, therefore, (1− τn)weini+
(
1 +

(
1− τ k

)
r
)
a+T .

In period 2, output is produced using capital, K, and labor and a constant-returns-to-scale

neoclassical production function f (K,N). We assume that f (·) is net of depreciation.

Definition 1 A tax distorted competitive equilibrium is a vector (K,nL, nH , r, w; τn,

τ k, T ) such that

1. (K,nL, nH) solves

max
a,nL,nH

u (ω − a, n̄) + βE [u (ci, ni)] s.t. ci = (1− τn)weini +
(
1 +

(
1− τ k

)
r
)
a+ T ;

2. r = fK (K,N), w = fN (K,N), where N = πeLnL + (1− π) eHnH ;

3. and, τnwN + τ krK = G+ T .

The Ramsey problem is to choose τn, τ k, and T to maximize welfare. Since agents

are ex-ante identical there is no ambiguity about which welfare function to use, it is the

expected utility of the agents. If there is no risk, i.e. eL = eH , the agents are also ex-

post identical and the usual representative agent result applies: since negative lump-sum

transfers are available, it is optimal to obtain all revenue via this undistortive instrument

and set τn = τ k = 0.

In order to provide a sharp characterization of the optimal tax system we make the

following assumption discussed below.10

Assumption 1 No income effects on labor supply and constant Frisch elasticity, κ, i.e.

ucn − ucc
un
uc

= 0, and
uccun

n (uccunn − u2
cn)

= κ.

10In a similar two-period environment, Gottardi et al. (2014) characterize the solution to Ramsey problem
without Assumption A. However, they impose an alternative assumption about the sign of general equi-
librium effects, which are satisfied under Assumption A. Further, this assumption allows us to provide
a sharper characterization of the optimal tax system (besides the signs of taxes we also characterize the
levels).
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We pursue a variational approach. Suppose
(
K,nL, nH , r, w; τn, τ k, T

)
is a tax distorted

equilibrium.11 Consider a small variation on the tax system
(
dτn, dτ k, dT

)
, such that all

the equilibrium conditions are satisfied. Then, evaluate the effect of such a variation on

welfare, taking as given the optimal decision rules of the agents. Using this method we

establish the following proposition.

Proposition 1 In the uncertainty economy, if u satisfies Assumption A, then, the optimal

tax system is such that τ k = 0,

τn =
(ν − 1) π(1− π) (eHnH − eLnL)

(ν − 1) π(1− π) (eHnH − eLnL) + κN (πν + (1− π))
> 0, (1.1)

where ν ≡ uc(cL,nL)
uc(cH ,nH)

, and T balances the budget.

Proof. See Appendix A.1.

Notice that the planner could choose to finance G with T but chooses a positive dis-

tortive labor income tax instead. The revenue from labor taxation is rebated via lump-sum

transfers and the proportion of the agents’ income that comes from the uncertain labor

income is reduced. Hence, this tax system effectively provides insurance to the agents.

Why not provide full insurance by taxing away all the labor income? This is exactly what

would happen if labor were supplied inelastically. In fact, notice that in this case κ = 0 and

equation (1.1) implies τn = 1. However, with an endogenous labor supply the planner has

to balance two objectives: minimize distortions to agents’ decisions and provide insurance.

This balance is explicit in equation (1.1) seeing as a higher κ implies a lower τn. That is,

the more responsive labor supply is to changes in labor income taxes the more distortive

these taxes are and the planner chooses a lower labor income tax. In the limit, if κ → ∞
it will be optimal to set τn = 0.

With income effects on labor supply, distortions of the savings decision would spill over to

the labor supply decision and vice-versa. Thus, it could be optimal, for instance, to choose

τ k so as to mitigate the distortion imposed by a positive τn. This complex relationship

complicates the analysis considerably. Assumption 1 unties this relationship and as a result

it is optimal to set τ k = 0.

Next, suppose that eL = 1 − εunc/π and eH = 1 + εunc/ (1− π), so that εunc is a mean

preserving spread on the productivity levels. It is easy to see that if εunc = 0 equation (1.1)

11Since the equilibrium does not exist for τn ≥ 1 or τk ≥ (1 + r) /r, we impose the restrictions that τn < 1
and τk < (1 + r) /r.
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implies that τn = 0. The effect of an increase in εunc on the optimal τn is not as obvious since

the right hand side of equation (1.1) contains endogenous variables. An application of the

implicit function theorem, however, clarifies that as long as ∂ν/∂εunc > 0 and ∂ν/∂τn < 0,

it follows that ∂τn/∂εunc > 0, i.e. the optimal labor income tax is increasing in the level

of risk in the economy. Under standard calibrations, the equilibrium ratio of marginal

utilities, ν, is in fact increasing in the level of risk (∂ν/∂εunc > 0) and decreasing in the

labor income tax (∂ν/∂τn < 0).

1.2 Inequality economy

Consider the environment described above only without uncertainty and with initial wealth

inequality. That is, suppose the productivity levels do not vary between agents, i.e. eL =

eH = 1, and that ω can take two values: ωL for a proportion p of the agents and ωH > ωL

for the rest, with ω̄ ≡ pωL + (1− p)ωH .

Definition 2 A tax distorted competitive equilibrium is
(
aL, aH , nL, nH , r, w; τn, τ k, T

)
such that

1. For i ∈ {L,H}, (ai, ni) solves

max
ai,ni

u (ωi − ai, n̄) + βu (ci, ni) , s.t. ci = (1− τn)wni +
(
1 +

(
1− τ k

)
r
)
ai + T ;

2. r = fK (K,N), w = fN (K,N), where K = paL + (1− p) aH and N = pnL +

(1− p)nH ;

3. and, τnwN + τ krK = G+ T .

In this economy the concept of optimality is no longer unambiguous. Since agents are

different ex-ante, a decision must be made with respect to the social welfare function. In

what follows, by optimal we mean the one that maximizes W ≡ pUL + (1− p)UH ; the

utilitarian welfare function. The following proposition follows.

Proposition 2 In the inequality economy, if u satisfies Assumption A and has CARA or

is GHH, as in equation (3.1), then the optimal tax system is such that τn = 0,

τ k =

(
1+r
r

)
(ν − 1) p(1− p) (ωH − ωL)

(ν − 1) p(1− p) (ωH − ωL) + ρ
ψ

(pν + (1− p))
> 0, (1.2)
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where ρ ≡ 2+(1−τk)r
2+r

for CARA, ρ ≡ 1+β−
1
σ (1+(1−τk)r)

σ−1
σ

1+r+β
1
σ (1+(1−τk)r)

1
σ

for GHH, and ψ is the level of

absolute risk aversion.12 T balances the budget.

Proof. See Appendix A.2.

The planner chooses a positive capital income tax which distorts savings decisions but

allows for redistribution between agents. The ex-ante wealth inequality is exogenously

given. However, agents with different wealth levels in the first period will save different

amounts and have different asset levels in the second period. This endogenously generated

asset inequality is the one the tax system is able to affect. A positive capital income

tax rebated via lump-sum transfers directly reduces the proportion of the agents’ income

that will be dependent on unequal asset income achieving the desired redistribution which

implies a reduction of consumption inequality (by assumption, there is no labor supply

inequality).

One of the key elements of equation (1.2) is the inverse of the coefficient of absolute risk

aversion, 1/ψ, which is proportional to the agents’ intertemporal elasticity of substitution.

This elasticity indicates the responsiveness of savings to changes in τ k. Hence, the higher

this elasticity is the lower is the optimal level of τ k, since providing redistribution becomes

more costly. The τn = 0 result is again associated with Assumption 1.

Assuming that ωL = 1− εine/p and ωH = 1− εine/ (1− p), the effect of an increase in the

mean preserving spread, εine, on the optimal τ k can again be found by applying the implicit

function theorem on equation (1.2). It follows that, if ∂ν/∂εine > 0 and ∂ν/∂τ k < 0, then

∂τ k/∂εine > 0; the optimal capital income tax is increasing in the level of inequality in the

economy. If u satisfies Assumption A and has CARA one can show that this is always the

case.

1.3 Relationship with Dávila, Hong, Krusell and Rı́os-Rull (2012)

The results established in Dávila et al. (2012) have an interesting relationship to the ones we

obtain in this paper. We use the last result to explain this relationship. Among other things,

Dávila et al. (2012) show that the competitive equilibrium allocation in the SIM model is

constrained inefficient. That is, the incomplete market structure itself induces outcomes

that could be improved upon if consumers merely acted differently; if they used the same

set of markets but departed from purely self-interested optimization. The constrained

inefficiency results from a pecuniary externality. The savings and labor supply decisions of

12The level of absolute risk aversion is endogenous is the GHH case.
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the agents affect the wage and interest rates and, therefore, the uncertainty and inequality

in the economy. These effects are not internalized by the agents and inefficiency follows.

Notice that the planner’s problem in their environment is significantly different from the

Ramsey problem described here. There the planner affects allocations directly and prices

indirectly, as a result redistribution and insurance can only occur via the manipulation of

equilibrium prices. Whereas here the Ramsey planner affects (after tax) prices directly and

allocations indirectly.

In a setting similar to the inequality economy just described above, for instance, Dávila et

al. (2012) show that there is under accumulation of capital. A higher level of capital would

decrease interest rates and increase wages, reducing inequality. A naive extrapolation of

this logic would suggest that capital income taxes should be negative so as to encourage

savings. This logic, however, does not take into account the more relevant direct effect of

the tax system on after tax prices. Proposition 2 shows that the opposite is true: capital

income taxes should be positive.

1.4 Relationship with infinite horizon problem

The two-period examples are useful to understand some of the key trade-offs faced by the

Ramsey planner, since they allow for the exogenous setting of the levels of uncertainty (ex-

post risk) and inequality (ex-ante risk). In the infinite horizon version of the SIM model,

however, these concepts are inevitably intertwined. The characterization of the optimal tax

system, therefore, becomes considerably more complex. Labor income taxes affect not only

the level of uncertainty through the mechanism described above, but also the labor income

inequality and the distribution of assets over time. An agent’s asset level at a particular

period depends not only on its initial value, but on the history of shocks this agent has

experienced. Therefore, capital income taxation affects not only the ex-ante risk faced by

the agents but also the ex-post. Nevertheless, these results are useful to understand some

features of the optimal fiscal policy in the infinite horizon model as will become clear in

what follows.

2 The Infinite-Horizon Model

Time is discrete and infinite, indexed by t. There is a continuum of agents with standard

preferences E0 [
∑

t β
tu (ct, nt)] where ct and nt denote consumption and labor supplied in

period t and u satisfies the usual conditions. Individual labor productivity, e ∈ E where

E ≡ {e1, ..., eL}, are i.i.d. across agents and follow a Markov process over time governed by
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Γ, a transition matrix.13 Agents can only accumulate a risk-free asset, a. Let A ≡ [a,∞)

be the set of possible values for a and S ≡ E × A. Individual agents are indexed by the

a pair (e, a) ∈ S. Given a sequence of prices {rt, wt}∞t=0, labor income {τnt }∞t=0, (positive)

capital income {τ kt }∞t=0, and lump-sum transfers {Tt}∞t=0, each household, at time t, chooses

ct (a, e), nt (a, e), and at+1 (a, e) to solve

vt(a, e) = maxu(ct(a, e), nt(a, e)) + β
∑

et+1∈E

vt+1(at+1(a, e), et+1)Γe,et+1

subject to

(1 + τ c)ct(a, e) + at+1(a, e) = (1− τnt )wtent(a, e) + (1 + (1− I{a≥0}τ
k
t )rt)a+ Tt

at+1(a, e) ≥ a.

Note that value and policy functions are indexed by time, because policies {τ kt , τnt , Tt}∞t=0

and aggregate prices {rt, wt}∞t=0 are time-varying. The consumption tax, τ c, is a parame-

ter.14 Let {λt} be a sequence of probability measures over the Borel sets S of S with λ0

given. Since the path for taxes is known, there will be a deterministic path for prices and

for {λt}∞t=0. Hence, we do not need to keep track of the distribution as an additional state;

time is a sufficient statistic.

Competitive firms own a constant-returns-to-scale technology f (·) that uses capital, Kt,

and efficient units of labor, Nt, to produce output each period (f (·) denotes output net

of depreciation, δ denotes the depreciation rate). A representative firm exists that solves

the usual static problem. The government needs to finance an exogenous constant stream

of expenditure, G, and lump-sum transfers with taxes on consumption, labor income, and

(positive) capital income. It can also issue debt {Bt+1} and, thus, has the following in-

tertemporal budget constraint

G+ rtBt = Bt+1 −Bt + τ cCt + τnt wtNt + τ kt rtÂt − Tt, (2.1)

13A law of large numbers operates so that the probability distribution over E at any date t is represented
by a vector pt ∈ RL such that given an initial distribution p0, pt = p0Γt. In our exercise we make sure
that Γ is such that there exists a unique p∗ = limt→∞ pt. We normalize

∑
i p
∗
i ei = 1.

14It is not without loss of generality that we do not allow the planner to choose τc. There are two reasons
for this choice. The first is practical, we are already using the limit of the computational power available
to us, and allowing for one more choice variable would increase it substantially. Second, in the US capital
and labor income taxes are chosen by the Federal Government while consumption taxes are chosen by
the states, so this Ramsey problem can be understood as the one relevant for a Federal Government. We
add τ c as a parameter for calibration purposes.
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where Ct is aggregate consumption and Ât is the tax base for the capital income tax.

Definition 3 Given K0, B0, {τ k0 , τn0 , T0} an initial distribution λ0 and a policy π ≡ {τ kt , τnt , Tt}∞t=1,

a competitive equilibrium is a sequence of value functions {vt}∞t=0, an allocation X ≡
{ct, nt, at+1, Kt+1, Nt, Bt+1}∞t=0, a price system P ≡ {rt, wt}∞t=0, and a sequence of distri-

butions {λt}∞t=1, such that for all t:

1. Given P and π, ct(a, e), nt(a, e), and at+1(a, e) solve the household’s problem and

vt(a, e) is the respective value function;

2. Factor prices are set competitively,

rt = fK(Kt, Nt), wt = fN(Kt, Nt);

3. The probability measure λt satisfies

λt+1 =

∫
S

Qt ((a, e),S) dλt, ∀S ∈ S

where Qt is the transition probability measure;

4. The government budget constraint, (2.1), holds and debt is bounded;

5. Markets clear,

Ct +Gt +Kt+1 −Kt = f (Kt, Nt) , Kt +Bt =

∫
A×E

at(a, e)dλt.

2.1 The Ramsey Problem

We now turn to the problem of choosing the optimal tax policy in the economy described

above. We assume that, in period 0, the government announces and commits to a sequence

of future taxes {τ kt , τnt , Tt}∞t=1, taking period 0 taxes as given. We need the following defi-

nitions:

Definition 4 Given K0, B0, λ0, and {τ k0 , τn0 , T0}, for every policy π, equilibrium allo-

cation rules X (π) and equilibrium price rules P (π) are such that π, X (π), P (π)

and corresponding {vt}∞t=0 and {λt}∞t=1 constitute a competitive equilibrium.
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Definition 5 Given K0, B0, λ0, and {τ k0 , τn0 , T0}, and a welfare function W (π), the Ram-

sey problem is to maxπ∈Π W (π) such that X (π) and P (π) are equilibrium allocation and

price rules, and Pi is the set of policies π = {τ kt , τnt , Tt}∞t=1 for which an equilibrium exists.15

In our benchmark experiments we assume that the Ramsey planner maximizes the util-

itarian welfare function: the ex-ante expected lifetime utility of a newborn agent who has

its initial state, (a, e), chosen at random from the initial stationary distribution λ0. The

planner’s objective is, thus, given by

W (π) =

∫
S

E0

∞∑
t=0

βtu (ct (a, e|π) , nt (a, e|π)) dλ0.

We consider alternative welfare functions in Sections 5.1 and 8.

2.2 Solution method

We solve the Ramsey problem defined above numerically. Given an initial stationary equi-

librium, for any policy π ∈ Π we can compute the transition to a new stationary equilibrium

consistent with that policy, as long as the taxes become constant at some point, and eval-

uate welfare W (π). We then search for the policy π = {τ kt , τnt , Tt}∞t=1 maximizing welfare

W (π). This is, however, a daunting task since it involves searching in the space of infinite

sequences. In order to make it computationally feasible we approximate the space of infinite

policy sequences Π with a space of sequences, ΠA, that can be identified by a finite number

of nodes.

In Section 7 we show that in complete markets economies optimal capital income taxes

should be front-loaded. Hence, in defining the set ΠA we take this under consideration.

That is, we allow capital income taxes to hit the imposed upper bound of 100 percent for

the first t∗ periods, where a model period is equivalent to one calendar year. Importantly,

t∗ is a choice variable and is allowed to be zero, so the fact that the solution displays a

capital tax at the upper bound for a positive amount of periods is not an assumption but

a result. Other than this, we assume that the paths for
{
τ kt
}∞
t=t∗+1

and {τnt , Tt}
∞
t=1 follow

splines with nodes set at exogenously selected periods. We started with a small number of

them and sequentially added more until the solution converged. In the main experiment

the planner was allowed to choose 15 nodes: t∗, τ kt∗+1, τ k75, τ k100, τn1 , τn15, τn30, τ k45, τ k60, τ k100,

T1, T15, T30, T45, and T60. The last node for lump-sum, T100, is determined endogenously

in order for government debt to be bounded and is, therefore, not a choice variable. In

15In particular, notice that the government debt path associated with a policy in Π must be bounded.
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the intermediate periods the paths follow a cubic spline function and after the final period,

100, they become constant at the last level. The choice of the periods 1, 15, 45, 60, and

100, were placed at the same distance from each other except for the last ones which are

supposed to capture the long run levels. The choice of nodes for {τt}1
t=t∗00 are a result of

the fact that, for experiments with less nodes, the optimal t∗ was always close to 50. In the

Online Appendix we include details about the calculation of T100 and figures that compare

the optimal fiscal policy computed with 2, 3, 6, 8, 10, 13 and, finally, 15 variables. The

welfare gains associated with each of these solutions are displayed in Table 1. We view the

fact that the welfare gains from 13 to 15 nodes is small, around 0.01 percent, and that the

optimal taxes in the two experiments are close to one another as evidence that we have

allowed for enough nodes.

Table 1: Change in welfare at optimum from adding nodes

Nodes 2→ 3 3→ 6 6→ 8 8→ 10 10→ 13 13→ 15

Welfare 0.54 0.27 0.11 0.26 0.03 0.01

Solving the problem described above is a particularly hard computational task. Effec-

tively we are maximizing W (π) such that π ∈ ΠA. We know very little about its properties;

it is a multivariate function with potentially many kinks, irregularities and multiple local

optima. Thus, we need a powerful and thorough procedure to make sure we find the global

optimum. We design a numerical algorithm for global optimization, based on the insights

from Guvenen (2011), Kan and Timmer (1987a) and Kan and Timmer (1987b), and apply

it to solve the Ramsey problem. Our algorithm is parallelized for multiple cores and a

detailed description of it is contained in the Online Appendix. Here, we present a heuristic

overview.

The algorithm can be divided into two main stages: a global and a local one. In the

global stage we randomly draw a very large number of policies from the approximated

domain ΠR and compute the transition between the exogenously given initial stationary

equilibrium and a final stationary equilibrium that is policy dependent. Then, we compute

welfare W (π) for each of those policies and select the ones that yield the highest levels of

welfare. These selected policies are then clustered i.e. similar policies in terms of welfare

are placed in the same cluster. Next, in the local stage we run for each cluster a derivative

free optimizer based on an algorithm designed by Powell (2009). The sequence of global

and local searches is repeated until the number of local minima found and the expected

number of local minima in our problem, determined by a Bayesian rule, are the sufficiently
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close. Then we pick the global optimum from the set of local optima. The main experiment,

with 15 nodes was conducted with the use of 576 cores at the Minnesota Supercomputing

Institute and it took approximately 120 hours.

3 Calibration

We calibrate the initial stationary equilibrium of the model economy to replicate key prop-

erties of the US economy relevant for the shape of the optimal fiscal policy. Table 2 sum-

marizes our parameter choices together with the targets we use to discipline their values

and their model counterparts. We use data from the NIPA tables for the period between

1995 and 200716 and from the 2007 Survey of Consumer Finances (SCF).

Table 2: Benchmark Model Economy: Target Statistics and Parameters

Statistic Target Model Parameter Value

Preferences and Technology

Intertemporal elast. of substitution 0.50 0.50 σ 2.000*

Frisch elasticity 0.72 0.72 ν 0.720*

Average hours worked 0.30 0.30 χ 3.905

Capital to output 2.72 2.72 β 0.948

Capital income share 0.38 0.38 α 0.380*

Investment to output 0.27 0.27 δ 0.100

Borrowing Constraint

% of hhs with wealth < 0 18.6 19.3 a/Y −0.025

Fiscal Policy

Capital income tax (%) 36.0 36.0 τ k 0.360*

Labor income tax (%) 28.0 28.0 τn 0.280*

Consumption tax (%) 5.0 5.0 τ c 0.050*

Transfer to output (%) 8.0 8.0 T/Y 0.080

Debt-to-output (%) 63.0 63.0 G/Y 0.146

Notes: Parameter values marked with (*) were set exogenously, all the others were endogenously and jointly
determined.

16We choose this time period to be consistent with the one used to pin down fiscal policy parameters which
we take from Trabandt and Uhlig (2011) and also to prevent the Great Recession to affect our results.
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3.1 Preferences and technology

We assume GHH preferences (see Greenwood et al. (1988)) with period utility given by

u (c, n) =
1

1− σ

(
c− χ n

1+ 1
κ

1 + 1
κ

)1−σ

, (3.1)

where σ is the coefficient of relative risk aversion, κ is the Frisch elasticity of labor supply

and χ is the weight on the disutility of labor. These preferences exhibit no wealth effects

on labor supply, which is consistent with some microeconometric evidence showing these

effects are in fact small. See Holtz-Eakin et al. (1993), Imbens et al. (2001), Chetty et al.

(2012) and Cesarini et al. (2017) for details.17

Further, they imply that aggregate labor supply is independent of the distribution of

wealth which is convenient for computing out of steady state allocations in our main ex-

periment. We set the intertemporal elasticity of substitution to 0.5; the number frequently

used in the literature (e.g. Dávila et al. (2012) and Conesa et al. (2009)). For the Frisch

elasticity, κ, we rely on estimates from Heathcote et al. (2010) and use 0.72. This value is

intended to capture both the intensive and the extensive margins of labor supply adjust-

ment together with the typical existence of two earners within a household. It is also close

to 0.82, the number reported by Chetty et al. (2011) in their meta-analysis of estimates for

the Frisch elasticity using micro data. The value for χ is chosen18 so that average hours

worked equals 0.3 (the associated average effective labor level, N , is 0.44). To pin down the

discount factor, β, we target a capital to output ratio of 2.72, and the depreciation rate, δ,

is set to match an investment to output ratio of 27 percent.19

The aggregate technology is given by a Cobb-Douglas production function Y = KαN1−α

with capital share equal to α, which is set to its empirical counterpart of 0.38.20

3.2 Borrowing Constraints

We discipline the borrowing constraint a using the percentage of households in debt (nega-

tive net worth). We target 18.6 percent following the findings of Wolff (2011) based on the

17Marcet et al. (2007) investigate the role of wealth effects on the differences in allocation between complete
and incomplete markets and conclude that they can be relevant under certain calibrations.

18It is understood that in any general equilibrium model all parameters affect all equilibrium objects. For
the presentation purposes, we associate a parameter with the variable it affects quantitatively most.

19Capital is defined as nonresidential and residential private fixed assets and purchases of consumer
durables. Investment is defined in a consistent way.

20In the initial stationary equilibrium output is equal to 0.82.
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2007 SCF.

3.3 Fiscal policy

In order to set the tax rates in the initial stationary equilibrium we use the effective average

tax rates computed by Trabandt and Uhlig (2011) from 1995 to 2007 and average them.

The lump-sum transfers to output ratio is set to 8 percent and we discipline the govern-

ment expenditure by imposing a debt to output ratio of 63 percent also following Trabandt

and Uhlig (2011). The latter is close to the numbers used in the literature (e.g. Aiya-

gari and McGrattan (1998), Domeij and Heathcote (2004) or Röhrs and Winter (2017)).

The calibrated value implies a government expenditure to output ratio of 15 percent, the

data counterpart for the relevant period is approximately 18 percent. Further, we also

approximate well the actual income tax schedule as can be seen in Figure 1.
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Figure 1: Income tax schedule

Notes: The data was generously supplied by Heathcote et al. (2017) who used PSID and the TAXSIM
program to compute it. The axis units are income relative to the mean.

3.4 Labor income process

The stochastic process for individual labor productivity levels, e, is calibrated to match

statistical properties of the labor income process and the distributions of wealth, earnings

and income. We model it as a sum of a persistent component eP with Markov matrix ΓP

and a transitory component eT with probability vector PT .21 There are 4 persistent, and

6 transitory productivity levels. Since we normalize the average productivity to one and

probabilities must also add up to one, we are left with 26 parameters to choose.

It is common to use the discretization procedures introduced by Tauchen (1986) or

Rouwenhorst (1995) when calibrating the Markov process for productivities. These meth-

21In the notation of the model, e = eT + eP and Γ = ΓP ⊗ diag(PT ).
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ods have limited ability to represent higher order moments of the labor income process

such as its skewness and kurtosis. We do not impose the restrictions associated with those

methods which allows us to have more targets.

To match the wealth, earnings and income distributions we follow Castañeda et al. (2003)

and target the Gini coefficients, the shares owned by every quintile, plus the bottom and

top 5% in the 2007 Survey of Consumer Finances as reported by Dı́az-Giménez et al. (2011).

Similarly to Domeij and Heathcote (2004) we also target properties of the individual labor

income22 estimated by Guvenen et al. (2015): we target the variance, skewness and kurtosis

of labor income growth in 1 and 5 years, and the autocorrelation of the annual labor

income.23 Table 3 summarizes the parameter values and targeted moments, notice that the

model is over identified with 31 targets for the 26 parameters.

3.5 Model performance

Table 4 presents an important dimension along which our model is consistent with the data:

income sources over the quintiles of income. The composition of income,24 specially of the

consumption-poor agents, plays an important role in determining the optimal fiscal policy.

The fraction of uncertain labor income determines the strength of the insurance motive and

the fraction of the unequal asset income affects the redistributive motive. Our calibration

delivers, without targeting, a good approximation of the income composition.

4 Main Results

The optimal paths for the fiscal policy instruments are presented in Figure 2. Capital

income taxes are front-loaded hitting the upper bound for 53 years then decrease to 42

percent in the long run. Labor income taxes initially remain close to the initial value of 28

percent, then increase towards a final value of 40 percent. The ratio of lump-sum transfers

to output is more than doubled from the initial value of 8 percent to an average level of

about 18. The government accumulates assets in the initial periods of high capital income

taxes reaching a level of debt-to-output of about −100 percent, which then converges to a

final level of 40 percent. Relative to keeping fiscal instruments at their initial levels, this

22Though in our model there is no difference between the two concepts, in dealing with the data we follow
Dı́az-Giménez et al. (2011) and call labor income wages and salaries of all kinds, and earnings the sum
of labor income plus a fraction of business income.

23We compute these moments in closed form directly from the Markov matrix relying on insights from
Civale et al. (2016).

24Dávila et al. (2012) demonstrate that the composition of income specially of poor agents is a crucial
determinant of the optimal policy.

22



Table 3: Benchmark Model Economy: Target Statistics and Parameters

Model Parameters

Persistent Shock Transitory Shock

ΓP =


0.96 0.04 0.00 0.00

0.08 0.91 0.01 0.00

0.01 0.00 0.98 0.01

0.09 0.01 0.01 0.89

 eP =


0.48

0.88

1.80

7.14

 PT =



0.05

0.04

0.12

0.59

0.10

0.11


eT =



−0.23

−0.10

−0.06

0.01

0.18

0.21


Statistics Target Model Target Model Target Model

Moment of Distribution Wealth Earnings Income

Gini index 0.82 0.84 0.64 0.61 0.57 0.55

% in bottom 5% −0.2 −0.0 −0.1 0.5 0.2 0.9

% in 1st quintile −0.2 −0.1 −0.1 3.4 2.8 4.6

% in 2nd quintile 1.1 0.3 4.2 4.1 6.7 5.8

% in 3th quintile 4.5 2.1 11.7 8.3 11.3 9.6

% in 4th quintile 11.2 10.8 20.8 19.7 18.3 22.6

% in 5th quintile 83.4 86.9 63.5 64.5 60.9 57.5

% in top 5% 60.3 58.4 35.3 34.5 36.9 31.2

Statistical Properties of Labor Income Process

Variance of 1-year diff. 0.26 0.27

Skewness of 1-year diff. −1.07 −0.75

Kurtosis of 1-year diff. 14.93 14.58

Variance of 5-year diff. 0.61 0.64

Skewness of 5-year diff. −1.25 −0.82

Kurtosis of 5-year diff. 9.51 10.19

Autocorrelation 0.88 0.88

leads to a welfare gain equivalent to a permanent 13.9 percent increase in consumption.

This section is devoted to explaining the economics behind these results.

23



Table 4: Income sources by quintiles of income

Quintile US Data Model

Labor Asset Transfer Labor Asset Transfer

1st 38.4 -1.9 63.5 57.0 0.7 42.3

2nd 66.4 2.5 31.1 60.8 5.9 33.3

3rd 78.6 2.7 18.7 73.9 6.1 20.0

4th 85.4 4.0 10.6 71.0 20.4 8.5

5th 77.5 18.2 4.3 78.4 18.3 3.3

All 77.3 12.2 10.4 74.3 16.1 9.6

Notes: Table summarizes the pre-tax total income decomposition. We define the asset income as the sum
of income from capital and business. Data come from the 2007 Survey of the Consumer Finances, the
numbers are based on a summary by Dı́az-Giménez et al. (2011).

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

(a) Capital income tax
0 20 40 60 80 100 120

-0.1

0

0.1

0.2

0.3

0.4

(b) Labor income tax

0 20 40 60 80 100 120

0.05

0.1

0.15

0.2

0.25

(c) Lump-sum-to-output
0 20 40 60 80 100 120

-1

-0.5

0

0.5

(d) Debt-to-output

Figure 2: Optimal Fiscal Policy: Benchmark

Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition; The black dots are the
choice variables: the spline nodes and t∗, the point at which the capital income tax leaves the upper bound.

4.1 Aggregates

Looking only at the aggregates it seems hard to justify the optimal policy. This is because

the welfare gains associated with the policy come from the implied redistribution and extra
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insurance which require higher taxes and, therefore, are likely to be detrimental to aggregate

movements, a point that we clarify bellow in Section 4.5. The aggregates associated with the

implementation of the optimal policy are shown in Figure 15. At the end of the transition

capital is reduced by 28 percent, and labor by 17 percent.

Since there are no wealth effects on labor supply, the reduction of aggregate labor is easy

to understand: it is a result of the higher labor taxes and the lower level of capital. The

movement in capital has more forces at play. Besides the higher overall capital income

taxes and lower aggregate labor which reduces the marginal product of capital, another

force that acts to reduce the capital level is the reduction of the precautionary savings

due to the fact that the optimal policy implies a less risky after-tax labor income. Notice,

however, that even if capital income taxes were set to 100 percent forever, there would still

be a precautionary motive to save. Moreover, the fact that the government accumulates

assets over time, specially during the years with capital taxes at 100 percent, crowds in

capital which also limits its reduction - an effect we explain in more detail below in Section

4.7.

The lower levels of capital and labor lead to lower levels of output and, therefore, ag-

gregate consumption, which decrease by 24 and 26 percent respectively over the transition.

The concomitant reduction in average consumption and labor has ambiguous effects on the

welfare of the average agent. Hence, we also plot in Figure 15f what we call the average

consumption-labor composite, defined below in equation (4.1), which is the more relevant

measure for welfare. On impact the labor-consumption composite increases by 17 percent

since, besides the reduction in labor, consumption levels increase due to the initial reduc-

tion in savings. It then decreases over time eventually reaching a level that is 20 percent

lower than in the initial steady state.

4.2 Flatness of Welfare Function

Our numerical procedure for solving the Ramsey problem allows us to probe some aspects

of the solution that are hard to investigate analytically. In the process of optimizing the

solver tries several different paths for the fiscal instrument in search of the optimal one. We

save all these paths and in Figure 3 present the ones that lead to the highest welfare. All

paths plotted in this figure are associated with a welfare gain higher than 13.85 percent, less

than 0.01 percent away from the optimal path - the darkness of a path indicating higher

welfare.

First notice that the short-run dynamics is much more important, with no path deviating
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substantially from the optimal in the first 40 years. Though this is obviously a result of the

fact that the planner discounts the future at the same rate as agents, it does undermine

to some extent discussions about the precise values of the long-run optimal taxes in this

model; does not have a significant effect on welfare. Further, notice that the long-run levels

of capital income taxes and debt-to-output are the ones that display the most amount of

variation. Since the optimal taxes resolve trade-offs between redistribution, insurance and

the amount of distortions to agents decisions, it is not surprising that the welfare function

would be relatively flat around the optimum. An increase in the capital income taxes, for

instance, will improve welfare by providing more redistribution and insurance but reduce

it since it will distort the agents’ saving decision, these effects exactly offset each other at

the optimum, so “small enough” movements in the fiscal instruments do not matter much

for welfare - Figure 3 illustrates how small is small enough. We discuss this issue further

in Section 4.6.

(a) Capital income tax (b) Labor income tax

(c) Lump-sum-to-output (d) Debt-to-output

Figure 3: Flatness of Welfare Function

Notes: Around the optimal taxes we plot all paths that generate welfare gains within 0.01 percent of the
optimal path, the darkness of a path indicates higher welfare.
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4.3 Long-Run Optimality Conditions

Aiyagari (1995) analyses the optimal long-run capital income taxes in an environment

similar to the one we are working with.25 He argues that, since there is no aggregate

uncertainty, the Ramsey planner’s decision to move resources across time is risk-free and

the associated Euler equation, in the long run, implies the modified golden rule (i.e. β(1 +

fK(K,N)) = 1). On the other hand, agents face idiosyncratic shocks and the possibility

of being borrowing-constrained in some future periods which leads to extra savings due to

precautionary reasons. In order to implement the optimal level of capital in the long run

it follows that the planner must set positive capital income taxes. This logic also implies

that the modified golden rule should hold in the long run; our numerical results imply

exactly that. Figure 4 displays β(1 + fK(K,N)) for our benchmark results (solid line) and

for an experiment, described in more detail in Section 6.2, in which we restrict the policy

instruments to remain constant throughout the transition (dashed line). It becomes clear

that the variations of taxes over time are crucial to approximate the long-run properties of

the optimal tax system. Moreover, we view this as corroborating evidence for the accuracy

of our numerical long-run results.
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Figure 4: β(1 + fK(K,N))

Notes: Solid line: benchmark experiment; Dashed line: optimal transition with constant policy.

Recently Acikgoz et al. (2018) have made advancements towards obtaining a better char-

acterization of the long-run optimal tax system in environments very similar to ours. They

argue that the long-run optimal tax system is independent of initial conditions and of the

transition towards it and show that three long-run optimality conditions must be satisfied

- the modified golden rule and two additional ones. They propose an algorithm that allows

25The home production assumption in Aiyagari (1995) is equivalent to our assumption that preferences
are GHH. The differences are that in his environment the planner does not have lump-sum taxes as an
instrument, but chooses the level of government expenditure every period (which enters separably in the
agents’ utility functions).
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for the computation of the optimal long-run tax system. We have applied this algorithm

to our economy and have found consistent long-run results.26 The results in Acikgoz et al.

(2018) are obtained under the assumption that a Ramsey steady state exists, that is, the

optimal Ramsey policy is such that the policy itself and all equilibrium variables converge

to a steady state. Chen et al. (2018) show in a very similar environment that a Ramsey

steady state should not exist. One difference between those models that could be behind

the difference in their results is the fact that Acikgoz et al. (2018), as in this paper, allows

lump-sum transfers as an additional instrument for the Ramsey planner. There is, however,

another difference that could be relevant. Implicit in the assumption of the existence of a

Ramsey steady state is the fact that government debt must be bounded, which Chen et

al. (2018) abstract from. Without this assumption it might very well be the case that the

planner would run a Ponzi scheme causing debt to grow without bounds. Either way, in

this paper we restrict government debt to be bounded and implicitly assume in our solution

method that a Ramsey steady state exists, so the conditions in Acikgoz et al. (2018) should

be satisfied and it is reassuring that they are. Our solution method, however, does not

make use of these conditions is any way. Our results, moreover, indicate that the long-run

properties have very small implications for welfare since they are only relevant very far in

the future and that a focus on the short-run dynamics is more relevant.

4.4 Distributional Effects

As discussed above, movements in the aggregates do not provide a full picture of what

results from the implementation of the optimal fiscal policy. It is also important to un-

derstand its effects on inequality and on the risk faced by the agents. Figure 5a plots the

evolution of the Gini index for consumption-labor composite. Notice that, on impact the

Gini is significantly reduced and that this reduction is mostly maintained over the transi-

tion. As will become clear below, this reduction in inequality is behind most of the welfare

gains associated with the optimal policy. Not surprisingly, such a change would be sup-

ported by only by the agents with lower asset positions and productivity levels - see Table

5.

Figure 5b displays the evolution of the shares of labor, capital and transfer income out

of total income. Importantly, notice that the share of labor income is significantly reduced

under the optimal policy and replaced mostly by transfer income. Since all the risk faced

by agents in the SIM model is associated with their labor income, it turns out that they

26See the Online Appendix for details on how the conditions can be adapted to our environment exactly
and for the results we obtain using them.
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Table 5: Proportion in favor of reform by earnings and wealth quintiles

Quintile 1st 2nd 3rd 4th 5th All

Earnings 88.1 88.1 88.0 62.3 0.0 65.3

Wealth 99.8 99.1 89.6 27.8 9.1 65.3

face less risk after the policy is implemented which is also welfare improving. The next

sections will quantify more precisely the importance of these effects.
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(a) Cons.-Labor Comp. Gini (b) Income shares

Figure 5: Inequality measures

Notes (a): Thin lines: initial stationary equilibrium; Thick lines: optimal transition.; (b): From top to
bottom the areas represent the shares of asset, transfer and labor income; before time 0 the areas represent
the shares in the initial stationary equilibrium.

4.5 Sources of welfare improvement

Here we present a result that is particularly helpful for understanding the properties of the

optimal fiscal policy. First, let v(xt) ≡ u(ct, nt) where xt is the individual consumption-

labor composite, the term “inside” the utility function in equation (3.1), that is

xt ≡ ct − χ
n

1+ 1
κ

t

1 + 1
κ

, (4.1)

and Xt denote its aggregate level. The utilitarian welfare function can increase for three

reasons. First, it will increase if the utility of the average agent, U ({Xt}) ≡
∑∞

t=0 β
tv(Xt),

increases; we call this the level effect. Reductions in distortive taxes will achieve this goal

by allocating resources more efficiently. This is the only relevant effect in a representative

agent economy (without heterogeneity). Second, since agents are risk averse, it increases
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if the uncertainty about individual paths {xt}∞t=0 is reduced; we call this the insurance

effect. By redistributing from the (ex-post) lucky to the (ex-post) unlucky, a tax reform

reduces the uncertainty faced by the agents. Finally, it will increase if the inequality

across the certainty equivalents of the individual paths {xt}∞t=0, for agents with different

initial (asset/productivity) states, is reduced; we call this the redistribution effect. By

redistributing from the rich (ex-ante lucky) to the poor (ex-ante unlucky), the tax reform

reduces the inequality between agents. In what follows we define these components precisely

and present propositions to support their usefulness.

Average welfare gain Let v (xt) ≡ u (ct, nt) where u is defined in (3.1) and consider a

policy reform. Denote by xRt (a0, e
t) the equilibrium consumption-labor composite path of

an agent with initial assets a0 and history of productivities et if the reform is implemented.

Let xNRt (a0, e
t) be the equilibrium path in case there is no reform. The average welfare

gain, ∆, that results from implementing the reform is defined as the constant (over time

and across agents) percentage increase to xNRt (a0, e
t) that equalizes the utilitarian welfare

to the value associated with the reform, that is,∫
E0

[
U
(
(1 + ∆)

{
xNRt

(
a0, e

t
)})]

dλ0 (a0, e0) =

∫
E0

[
U
({
xRt
(
a0, e

t
)})]

dλ0 (a0, e0) ,

(4.2)

where λ0 is the initial distribution over states (a0, e0) and

U
({
xt
(
a0, e

t
)})
≡

∞∑
t=0

βtv(xt(a0, e
t)) =

∞∑
t=0

βtu
(
ct
(
a0, e

t
)
, nt
(
a0, e

t
))
.

Components of welfare Let the average level of xt at each t be

Xj
t ≡

∫
xjt
(
a0, e

t
)
dλjt

(
a0, e

t
)

, for j = R,NR.

Then, the level effect, ∆L, is given by

U
(
(1 + ∆L)

{
XNR
t

})
= U

({
XR
t

})
. (4.3)

Let {x̄jt (a0, e0)} denote the sequence of individual consumption-labor certainty equivalents,

U
({
x̄jt (a0, e0)

})
= E0

[
U
({
xjt
(
a0, e

t
)})]

, for j = R,NR. (4.4)
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Notice that the path {x̄jt (a0, e0)} is not fully determined by this condition. We, therefore,

impose that for every initial state (a0, e0), the individual certainty equivalent is proportional

to path of an agent who always has the productivity level e0 and has assets a0 in period 0,

that is27

x̄jt (a0, e0) = ηj (a0, e0)xjt (a0, e0) , for j = R,NR, (4.5)

where ηj (a0, e0) denotes the degree of proportionality. The usefulness of this condition

will become apparent briefly. Next, let X̄j
t be the aggregate consumption-labor certainty

equivalent,

X̄j
t =

∫
x̄jt (a0, e0) dλ0 (a0, e0) , for j = R,NR. (4.6)

The insurance effect, ∆I , is defined by

1 + ∆I ≡
1− pRunc
1− pNRunc

, where U
((

1− pjunc
) {
Xj
t

})
≡ U

({
X̄j
t

})
, (4.7)

and the redistribution effect, ∆R, by

1 + ∆R ≡
1− pRine
1− pNRine

, where U
((

1− pjine
) {
X̄j
t

})
≡
∫
U
({
x̄jt (a0, e0)

})
dλ0 (a0, e0) . (4.8)

The terms punc and pine are the costs of uncertainty and inequality in the economies with

or without reform. These definitions have the following useful properties.

Proposition 3 If there is no uncertainty in the economy, the cost of uncertainty, punc, is

zero, and if there is no inequality, the cost of inequality, pine, is equal to zero.

Proof. See Appendix B.

The definition of the individual certainty equivalents in equation (4.5) is crucial in establish-

ing this result. As it turns out the usual choice of a constant individual certainty equivalent

leads, for instance, to a cost of uncertainty that is not necessarily zero in an economy that

has no uncertainty, which besides being an oxymoron would mean that the magnitude of

the insurance effect would not be completely due to changes in the amount of uncertainty

the agents are exposed to.28

27This way of defining individual certainty equivalents is the main difference between our welfare decom-
position procedure and the one used in Floden (2001) and Benabou (2002); it is the key to establishing
Proposition 3.

28We thank Piero Gottardi for pointing this out.
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Welfare decomposition The following proposition establishes that it is possible to de-

compose the average welfare gains into the components described above.29

Proposition 4 If preferences are GHH, then

1 + ∆ = (1 + ∆L) (1 + ∆I) (1 + ∆R) .

Proof. See Appendix B.

Notice that none of the elements of the decomposition are defined residually, hence this is

indeed a decomposition and not a definition. The results of applying this decomposition

for our main results are in Table 6. In the next sections we elaborate on the reasons behind

these results.

Table 6: Welfare decomposition

∆ ∆L ∆I ∆R

13.9 −4.8 2.4 16.8

4.6 Variations around the optimal taxes

In this section we vary the tax levels around the optimal values and calculate the welfare

decomposition at each step in order to better understand the main determinants of the

optimal values. For every experiment, the entire path of lump-sum taxes was shifted up or

down in order to balance the government’s intertemporal budget constraint.

Number of years of capital income taxes in the upper bound The optimal path of

capital income taxes features 53 years of taxes at the imposed upper bound of 100 percent,

which we denote by t∗ = 53. Figure 6 shows what happens to the components of welfare if

capital income taxes are kept at the upper bound for more or less periods. The effect on

insurance is of second order, and, in line with the result in Proposition 2, the relevant trade-

off is between the extra redistribution associated with a higher t∗ versus the negative level

effect due to the extra amount of distortion. These two effects, however, almost exactly

29The welfare gains described above are in terms of consumption-labor composite units. The decomposition
does not hold exactly in terms of consumption units. To keep our results comparable with others, we
report the average welfare gains in terms of consumption units and rescale the numbers for ∆L, ∆I , and
∆R accordingly.
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offset each other leading to a relatively flat average welfare function which is consistent

with the findings in section 4.2.
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Figure 6: Variation on t∗

Notes (a): Dashed line: initial stationary equilibrium; Solid line: optimal transition and variation upon
it; (b): x-axis represents the movement in t∗ for the optimum minus 2 to plus 2, and the lines plot the
difference between each welfare measure and its value at the optimal.

Long-run capital income taxes Here we provide two sets of figures: the first varies all

the nodes for capital income taxes after t∗ by the same amount, the second varies only the

last node at t = 100. The level of capital income taxes at these nodes is allowed to increase

or decrease up to 5 percent relative to its optimal level. The results are displayed in Figure

7 and the welfare decomposition numbers are both comparable to the ones for changes in

t∗. That is, again the relevant trade-off is between the redistribution and the level effects.

This is somewhat surprising since these tax changes only affect capital taxes after 53 years

of transition and one might expect that the dependence on agents’ initial condition would

have mostly dissipated by then. The fact that this is not the case speaks to how persistent

this dependence actually is, to the point that the main determinant of long-run capital

income taxes is the amount of ex-ante risk, rather than ex-post.30 For the logic in Chamley

(2001) and Acikgoz et al. (2018) - that far enough in the long-run the dependence on agents’

initial conditions will fully dissipate so that only the insurance and level effects would be

relevant - to become relevant one would need to consider changes in capital taxes further

in the future than we consider here. Notice, however, that the experiment that moves only

the last node the insurance effect is more relevant and the redistribution effect less relevant

than in the one in which all nodes after t∗ are allowed to move. Therefore, it is reasonable

to expect that movements far enough in the future would indeed only affect the insurance

30Even focusing only on the productivity states, we have that maxi,j |(Γ100)i,j − πj | ≈ 0.1, that is, the
probability of being in state j in period 100 and having started in state i is still significantly different
from the probability of being in state j in according to the stationary distribution, denoted by π.
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effect and have no effect on redistribution. On a related note, in Section 5.1 we show that

the insurance effect by itself can rationalize levels of capital income taxes very similar to

the long-run levels seen here. Finally, take notice of the range of values for the welfare

decomposition in Figure 7d. They are an order of magnitude lower than the already small

range of values in Figure 7b. This is indicative of the relevance for welfare of the long-run

capital taxes in this model but also, the sheer fact that these figures display monotonic and

well behaved curves testifies to the precision of our solution.
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Figure 7: Variation on long-run capital income taxes

Notes (a) and (c): Dashed line: initial stationary equilibrium; Solid line: optimal transition and variation
upon it; (b) and (d): x-axis represents the movement in all nodes of capital taxes (b) or the last node at
t = 100 (d) from the optimum minus 5 to plus 5 percent, and the lines plot the difference between each
welfare measure and its value at the optimal.

Labor income taxes Here we consider changing the average level of labor income taxes

up and down by 5 percent, the results are in Figure 8. First notice, by comparing the welfare

numbers with the ones in Figures 6 and 7 that the effect of changes in labor income taxes are

an order of magnitude higher than the changes to capital income taxes considered above.

Besides this quantitative difference, the main qualitative difference is that the insurance

effect plays a comparable role to the redistribution effect in determining the optimal level of

labor income taxes. Hence, though labor income taxes do have important effects on ex-ante
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risk, the mechanism highlighted in Proposition 1 plays an important role here. That is,

a higher labor income tax which is rebated via lump-sum (exactly the experiment here),

effectively reduces the labor income risk that agents are exposed to.
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Figure 8: Variation on labor income taxes

Notes (a): Dashed line: initial stationary equilibrium; Solid line: optimal transition and variation upon it;
(b): x-axis represents the movement in t∗ for the optimum minus 5 to plus 5 percent, and the lines plot
the difference between each welfare measure and its value at the optimal.

4.7 The role of government debt

In the absence of borrowing constraints an increase in government debt, financed by an

appropriate change in the timing of lump-sum transfers, is innocuous. In response agents

simply adjust their savings one-to-one and the Ricardian equivalence holds.31 In the SIM

model, however, agents face a borrowing constraint (which is binding for some of them).

The Ricardian equivalence breaks down and in response to an increase in government debt

aggregate savings increase by less than one-to-one. Since the asset market must clear (i.e.

At = Kt + Bt), it follows that capital must decrease as a result. Hence, increases in

government debt crowd out capital while decreases crowd in capital.32

In the benchmark experiment this mechanism is mostly used by the Ramsey planner to

smooth out the capital path over time. The reduction in debt in the initial periods crowds

in capital which counterbalances the effect of the high capital income taxes. However,

movements in government debt can also have important general equilibrium price effects.

A lower level of government debt, for instance, leads to a higher capital level which re-

duces interest rates and increases wages. Hence, besides the potential positive level effect

31Since we are referring to the effect of changes in the timming of lump-sum transfers financed by debt,
the violation of Ricardian equivalence associated with proportional taxation, as in Barsky et al. (1986),
is not an issue.

32See Aiyagari and McGrattan (1998) and Röhrs and Winter (2017) for an extensive discussion of this
issue.
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associated with the higher levels of capital such a policy also affects the insurance and

redistribution effects. It effectively reduces the proportion of the agents’ income associated

with the unequal asset income and increases the proportion associated with uncertain labor

income. The result is a positive redistribution effect and a negative insurance effect. These

effects are going to play an important role in what follows.

5 The role of redistribution

In this section we consider two experiments that aim to clarify exactly what features of the

benchmark results are driven solely by the redistributive motive of the planner. Besides

providing additional insights about those results we find these experiments intrinsically

interesting as well.

5.1 Maximizing efficiency

The redistributive motive of the planner plays an important role in our benchmark results.

This preference for reducing inequality is associated with the particular welfare weights

of the utilitarian welfare function. Here, we use of the welfare decomposition, explained

in Section 4.5, and consider the problem of a Ramsey planner that maximizes the level

and insurance effects of the welfare decomposition, (1 + ∆L) (1 + ∆I). In the equality

versus efficiency trade-off such a planner places no weight on equality focusing only on the

reduction of distortions and ex-post risk.33 Figure 9 presents the results in comparison

with the benchmark results. Relative to the initial stationary equilibrium, the welfare

gains associated with the policy are equivalent to a permanent 3.4 percent increase in

consumption; 1.2 coming from the reduction in distortions and 2.2 from the extra insurance.

Labor and capital income taxes Relative to the benchmark experiment, labor income

taxes are about 10 percent lower throughout the transition. As indicated in Section 4.6,

higher labor income taxes are beneficial both for insurance and redistributive motives, so it

makes sense that removing one of these motives from consideration leads to a lower labor

income tax. Long-run capital income taxes are remarkably similar to the benchmark one.

In the short run, however, capital taxes are not kept at the upper bound for any periods. In

the benchmark results, capital income taxes are front loaded because the utilitarian planner

wants to provide redistribution and, since the dependence of agent’s individual states on

their initial values dissipates over time, the earlier redistribution takes place the better.

Since lump-sum transfers in the benchmark results could be reduced in every period, the

33In Section 8 we consider different levels of inequality aversion.
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usual explanation for the front loading of capital taxes - that it mimics lump-sum taxes

as it distorts less the agents decisions the earlier the taxes are imposed - does not hold.

However, just like in a representative agent economy without lump-sum, what the planner

really would like to do is to confiscate the initial asset holdings of the agents, though here

the goal is to redistribute them.34

Lump-sum transfers and debt Since average (over-time) taxes on capital and labor

income are lower than in the benchmark, lump-sum transfers must, on average, also be

lower. To understand the path of lump-sum over time it is relevant to notice that, absent

borrowing constraints, the agents would be indifferent about its timing. Since the agents

face borrowing constraints, it is, therefore, optimal to front-load lump-sum transfers as

much as possible. This, however, has the negative side effect of increasing government

debt, which crowds out capital. Incidentally, the reason why lump-sum transfers are not

front-loaded in the benchmark experiment is because this crowding out in combination with

the capital income taxes at 100 percent would lead to a fast and substantial reduction in the

capital level. Debt-to-output increases to steadily towards a final level of 322 percent, but

capital levels are still higher than in the benchmark experiment throughout the transition

as a result of the lower overall capital and labor income taxes.35 The general equilibrium

price effects associated with the crowing out of capital - the reduction in wages and increase

in interest rates - is also responsible for the insurance gains that follow from implementing

this policy.

Share of constrained agents In the benchmark result this share increases as a side effect

of redistribution via capital income taxation since it effectively compresses asset positions

towards the constraint. Having a larger share of agents close to the borrowing constraint

is also beneficial in the sense that it gives the planner more power to affect capital via

changes in debt - the Ricardian equivalence holds to a lower degree. On the other hand,

being close to the constraint is detrimental to the insurance effect since agents are less able

to absorb negative shocks. Since the planner here cares relatively more about insurance, it

actually brings to zero the share of agents that are borrowing constrained by front-loading

lump-sum transfers.36

34The experiment of considering a planner that ignores redistributive concerns is, therefore, akin to the
experiment in Chari et al. (2016) where they directly remove the planner’s motive to expropriate initial
asset holdings.

35The Online Appendix contains the figures for the aggregates of this experiment and the next where we
allow for an initial capital-income levy.

36A similar trade-off drives the results in Bhandari et al. (2017).
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Figure 9: Optimal Fiscal Policy: Maximizing Efficiency

Notes: Thin dashed line: initial stationary equilibrium; Solid line: path that maximizes efficiency optimal
transition; Thick dashed line: path that maximizes the utilitarian welfare function (Benchmark Results).

5.2 Initial capital-income levy

Since the utilitarian planner wants to front load capital income taxes we conduct another

experiment in which we allow the planner to also change capital income taxes in period

t = 0. We find that the planner then chooses to expropriate 99 percent of the initial asset

holding. Surprisingly, however, this does not lead to lower capital income taxes in the future

periods, on the contrary, capital income taxes are kept in the upper bound of 100 percent

for longer and reach a higher long-run level than in the benchmark experiment. What is

driving this result is the fact that with the initial capital levy the government obtains a

lot of revenue so their asset position goes immediately from a debt-to-output level of 63

percent to −279 percent. As a result, capital is crowded in and the downward distortions

to capital accumulation associated with capital taxes are less relevant. On the other hand,

capital taxes are still beneficial to provide insurance and further redistribution going for-

ward. Importantly, even though capital taxes are overall significantly higher relative to the

benchmark, the equilibrium capital stock is still higher throughout the transition. The re-

sults are shown in Figure 10. The welfare gains are equivalent to a permanent 32.4 increase

in consumption, −2.8 coming from the level effect, 1.9 from the insurance and 33.6 from
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redistribution.
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Figure 10: Optimal Fiscal Policy: Levy on Initial Capital Income

Notes: Thin dashed line: initial stationary equilibrium; Solid line: path that maximizes the utilitarian
welfare function allowing for capital income taxes to move in period 0 (though the tax level at t = 0 is not
plotted since it is equal to 2, 570 percent) ; Thick dashed line: benchmark results.

6 Transitory effects

In this section we quantify the importance of transitory effects. We first compute the

optimal fiscal policy ignoring transitory welfare effects. A comparison with our benchmark

results allows us to measure the importance of accounting for these effects. If the difference

was small this would be a validation of experiments of this kind performed in the literature.

It turns out, however, that the results are remarkably different. A better option, is to

solve for the optimal policy with constant instruments accounting for transitory welfare

effects. The welfare loss associated with holding the instruments constant, however, is still

significant. The results are summarized in Table 7.

6.1 Maximizing steady state welfare

Here the the planner chooses stationary levels of all four fiscal policy instruments to max-

imize welfare in the final steady state. In particular, the planner can choose any level of
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Table 7: Final Stationary Equilibrium: transitory effects

τ k τn T/Y B/Y K/Y ∆ ∆L ∆I ∆R

Initial equilibrium 36.0 28.0 8.0 63.0 2.71 − − − −

Stat. equil. − 43.4 16.1 −375.2 4.20 41.3 6.7 0.1 32.3

Stat. equil. no debt 32.6 27.7 7.6 63.0 2.76 0.1 0.9 −0.1 −0.7

Constant policy 96.1 34.9 20.6 −95.5 2.02 12.7 −4.5 1.8 15.9

Benchmark 42.0 40.9 13.9 40.0 2.48 13.9 −4.8 2.4 16.8

Notes: All values, except for K/Y , are in percentage points.

government debt without incurring in the transitional costs associated with it. It chooses a

debt-to-output ratio of −375.2 percent. At this level the amount of capital that is crowded

in is close to the golden rule level, that is, such that interest rates (net of depreciation)

equal to zero. Thus, taxing capital income in this scenario has no relevant effect and we

actually find multiple solutions with different levels of capital income taxes which is why

we do not display that number in Table 7. The average welfare gains associated with this

policy are of 41.3 percent, that is, agents would be willing to pay this percentage of their

consumption in order to be born in the stationary equilibrium of an economy that has this

policy instead of the initial stationary equilibrium. However, these welfare gains ignore

transitory effects, it is as if the economy jumped immediately to a new steady state with

a much higher capital stock and in which the government has a large amount of assets

without incurring in the costs associated with accumulating it.

This result contrasts with the one in Aiyagari and McGrattan (1998). They run a similar

experiment with some important differences: in their model the only tax available to the

planner is a total income tax, and their calibration strategy for the labor income process

focuses on matching the auto-correlation and variance of labor income without targeting

distributional moments. They find that the government, even though it could costlessly

choose any level of debt-to-output, chooses a level very close to the actual level in the

US data at the time, around 67 percent. In fact, they show that the welfare function

is relativelly flat with respect to the choice of debt-to-output. Röhrs and Winter (2017)

replicate their experiment with a calibration that targets wealth inequality statistics and

find the opposite result, i.e. the government chooses to hold high levels of assets (they also

allow for different tax instruments which they show also affects the result). The mechanism

described in Section 4.7 is important to understanding these results: a higher debt level

crowds out capital, which increases interest rate and reduces wages. Therefore, a higher
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debt level generates (i) a positive insurance effect, and (ii) negative level and redistribution

effects. In Aiyagari and McGrattan (1998) the former dominates the latter, here and in

Röhrs and Winter (2017) the opposite occurs. In particular, matching the actual level of

wealth inequality makes redistribution a higher priority for the utilitarian planner. Figure

11 presents the welfare gains and decomposition for an experiment in which we allow only

for total income taxes that balance the budged, as in Aiyagari and McGrattan (1998), and

vary the level of debt-to-output.
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-50
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Figure 11: Welfare decomposition versus debt-to-gdp in steady state

Notes: the variable in the x-axis is the debt-to-gdp in steady state; the thin dashed vertical line marks
the level of debt-to-gdp in the initial stationary equilibrium, 63%, versus which the welfare changes are
calculated.

An alternative experiment, which is closer to the one studied by Conesa et al. (2009),

is to restrict the level of debt-to-output to remain at its initial level and choose only the

other fiscal instruments. When this is the case, the planner chooses fiscal instruments at

levels very close to the initial ones. As a result, the policy leads to small welfare gains of

only 0.1 percent relative to the initial steady state. Interestingly, this result for the fiscal

instruments is analogous to the finding in Aiyagari and McGrattan (1998) about the level

of debt-to-output.

6.2 Transition with constant policy

Here we consider the problem of finding the constant optimal fiscal policy that maximizes

the same welfare function we use in our benchmark experiment, in which transitory effects

are accounted for. Since the government cannot change taxes over time and the welfare

function puts higher weight on the short run, the optimal taxes under this restriction are

close to the ones in the short run of the optimal dynamic taxes in the benchmark experiment,

see Figure 12.37 The long-run levels of the fiscal instruments, however, are significantly

37Figures with the corresponding aggregates are presented in the Online Appendix.
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Figure 12: Optimal Fiscal Policy: Constant Policy

Notes: Thin dashed line: initial stationary equilibrium; Solid line: path that maximizes efficiency optimal
transition; Thick dashed line: Benchmark Results.

different. Long-run capital income taxes and debt-to-output are specially different, since

they vary more over the transition. Hence, if one is interested in the long-run properties of

the fiscal instruments, it is important to allow them to vary over time. In particular, as we

noticed above in Section 4.3, whereas the modified golden rule (approximately) holds for

the benchmark policy, it does not hold under this restriction, see Figure 4. Finally, notice

the restriction to constant policies leads an average welfare loss of 1.2 percent relative to

the optimal dynamic policy.

7 Complete Market Economies

To our knowledge, this paper is the first to solve the Ramsey problem in the SIM environ-

ment. To highlight the role of the market incompleteness for the optimal policy and relate

our findings to other results in the literature, we provide a build up to our benchmark result.

First, we start from the representative agent economy (Economy 1) and introduce hetero-

geneity only in initial assets (Economy 2), heterogeneity only in individual productivity

levels (constant and certain) (Economy 3), and heterogeneity both in initial assets and in

individual productivity levels (Economy 4). Introducing idiosyncratic productivity shocks
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and borrowing constraints brings us back to the SIM model. At each step, we analyze the

optimal fiscal policy identifying the effect of each feature.

In what follows we examine the optimal fiscal policy in Economies 1-4. Their formal

environments can be quickly described by starting from the SIM environment delineated

above. Economy 4 is the SIM economy with transition matrix, Γ, set to the identity matrix.

and borrowing constraints replaced by no-Ponzi conditions. Then, we obtain Economy 3 by

setting initial asset levels to its average, Economy 2 by setting the productivity levels to its

average, e = 1, and Economy 1 by equalizing both initial assets and levels of productivity.38

Figure 13 contains the numerical results obtained using the same method used for the

benchmark results together with some of the analytical equations derived bellow.

7.1 Economy 1: representative agent

To avoid a trivial solution, the usual Ramsey problem in the representative agent economy

does not consider lump-sum transfers to be an available instrument. Since in this paper

we do, the solution is, in fact, very simple. It is optimal to obtain all revenue via lump-

sum taxes and set capital and labor income taxes so as not to distort any of the agent’s

decisions. This amounts to setting τ kt = 0 and τnt = −τ c for all t ≥ 1. Since consumption

taxes are exogenously set to a constant level, zero capital income taxes leaves savings

decisions undistorted and labor income taxes equal to minus the consumption tax ensures

labor supply decisions are not distorted as well. In this setup the Ricardian equivalence

holds, so that the optimal paths for lump-sum taxes and debt are indeterminate: there is

no lesson to be learned from this model about the timing of lump-sum taxes or the path of

government debt. This will also be the case in Economies 2, 3 and 4 and is why we do not

discuss or plot them.

7.2 Economy 2: heterogeneity in initial assets

Introducing heterogeneity in the initial level of assets we can diagnose the effect of this

particular feature on the Ramsey policies by comparing it to the representative agent ones.

We extend the procedure introduced by Werning (2007)39 to characterize the optimal poli-

cies for this and the next two economies. For the economy with heterogeneity in asset we

38In order to keep the amount of labor income inequality comparable with the benchmark calibration we
rescale the productivity levels so as to keep the variance of the present value of labor income the same.

39Werning (2007) solves for separable and balance growth path utility functions. Besides solving for GHH
preferences we also impose the upper bound on capital income taxes and remove the possibility of time
zero taxation to keep the results comparable with the benchmark ones.
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obtain the following proposition.

Proposition 5 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is

given by τ kt = 1 for 1 ≤ t < t∗ and τ kt = 0 for all t > t∗; and τnt = −τ c for all t ≥ 1.

Proof. See Appendix C.1.

The results in this and the next two propositions are valid for any set of welfare weights.40

Hence, we effectively characterize the set of Pareto efficient policies. In this Proposition,

in particular, a change in the welfare weights would only change t∗, leaving unchanged the

long run optimal levels of capital and labor income taxes. In a similar setting Greulich et

al. (2016) obtain analogous results. In Section 8 we show that the long-run taxes in the

benchmark results are also robust to some changes in the welfare weights.

Once again, there is no reason to distort labor decisions since labor income is certain

and the same for all agents. However, the path of capital income taxes differs from the

representative agent ones. Proposition 2 provides a rationale for taxing capital in this case;

since agents have different initial asset levels, capital income taxes can be used to provide

redistribution. This fact together with the fact that capital income taxes are zero in the

long run determine the optimal path for capital income taxes.41 Capital income taxes are

positive and front-loaded, hitting the upper bound in the initial periods and subsequently

being set to zero. The extra revenue obtained via capital taxation is redistributed via

lump-sum transfers (or a reduction in lump-sum taxes relative to the representative agent

level). It is important to reemphasize that since lump-sum transfers are an unrestricted

instrument, there is no reason to tax capital in the initial periods other than to achieve

redistribution.

In order to have a sense of the magnitudes of t∗ and the increase in lump-sum transfers,

we apply the same procedure to the one we used to solve for the optimal tax system in

the benchmark economy. All we need to do is choose the initial distribution of assets.

The stationary distribution of assets in this economy is indeterminate,42 hence, we can

40The associated numerical results do assume a utilitarian welfare function.
41Straub and Werning (2014) show that optimal long-run capital income taxes can be positive in environ-

ments similar to this one. The reason why their logic does not apply here is the fact that the planner
has lump-sum taxes as an available instrument which removes the need to obtain revenue via distortive
instruments. In the Online Appendix we include a more detailed discussion of this issue.

42For the preferences chosen above, consumption is linear on the individual asset level, and labor sup-
ply is independent of it. It follows that the equilibrium levels of aggregates are independent of the
asset distribution and equal to the representative agent ones (see Chatterjee (1994)). In a steady state,
β
(
1 +

(
1− τk

)
r
)

= 1 and, therefore, every agent will keep its asset level constant.
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choose any one we want. To keep the results comparable we choose the initial stationary

distribution from the benchmark experiment.43

7.3 Economy 3: heterogeneity in productivity levels

It turns out that the Ramsey policies for this economy are a bit more complex. Let Φ, Ψ,

and Ωn be constants, defined in Appendix C, and define

Θt ≡
Ct

Ωnχ κ
1+κ

N
1+κ
κ

t

− 1.

Proposition 6 Assuming capital income taxes are bounded only by the positivity of gross

interest rates, the optimal labor income tax, τnt , can be written as a function of Θt given

by

τnt (Θt) =
(1 + τ c) ΨΘt

ΦΘt + Ψ (σ + Θt)
− τ c, for t ≥ 1, (7.1)

with sensitivity

Θt
dτnt (Θt)

dΘt

=
σ (τnt (Θt) + τ c)2

(1 + τ c) Θt

. (7.2)

It is optimal to set the capital income tax rate according to

1 + (1− τ kt+1)rt+1

1 + rt+1

=
τnt + τ c

τnt+1 + τ c
1− τnt+1

1− τnt
, for t ≥ 1. (7.3)

Proof. See Appendix C.2.

Since labor income is unequal, there is a redistributive reason to tax it. Optimal labor

income taxes are not constant over time since they depend on Θt. If they were constant,

however, equation (7.3) would imply τ kt = 0 for all t ≥ 2. Thus, capital income taxes will

fluctuate around zero to the extent that labor income taxes vary over time. We disregard the

upper bound on capital income taxes, τ kt+1 ≤ 1, because it would complicate the result even

further and in a non-interesting way. It could be that the bound is violated if the variation

of Θt between t and t+ 1 is large enough. However, as discussed below, quantitatively this

is unlikely.

To obtain a numerical solution we set the productivity levels to the ones in the benchmark

economy and apply the same procedure. To have a sense of the magnitude of the sensitivity

43In fact, a rescaling of it since the steady state aggregate level of assets is different when there is no
idiosyncratic risk and, therefore, no precautionary motive for savings.
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Figure 13: Optimal Taxes: Complete Market Economies

Notes: Thin Dashed line: initial taxes; Solid line: optimal taxes calculated using the same procadure used
in the Benchmark experiment; Thick Dashed Lines: optimal taxes calculated by using the proposition
equations.
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of τnt to Θt we plug the initial stationary equilibrium numbers (τn = 0.28, τ c = 0.05, σ = 2,

and Θ ≈ 2) into equation (7.2). This implies a sensitivity of 0.1, i.e. a 1 percent increase

in Θt changes the tax rate by 0.1 of a percentage point, from 0.28 to 0.2797.44 This fact

together with the relative stability of Θt over time, implies that the optimal labor income

taxes are virtually constant and capital income taxes virtually zero.

In any case, the fact that capital is taxed at all seems to be inconsistent with the logic put

forward so far. It is not. When labor income taxes vary over time they distort the savings

decision, capital income taxes are then set to “undo” this distortion. The analogous is not

the case in Economy 2 because of the absence of income effects on labor supply; distortions

of the savings decision do not affect the labor supply.

For this economy and the next Figure 13 presents the optimal taxes calculate two ways:

using the same procedure as in the benchmark experiment and using the equations from

the propositions. We view the fact that the two are very similar as a validation of the

procedure used to obtain the benchmark results.

7.4 Economy 4: heterogeneity in initial assets and productivity

levels

The result for this economy is a combination of the last two.

Proposition 7 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is

given by τ kt = 1 for 1 ≤ t < t∗, τ kt follows equation (7.3) for t > t∗; τnt evolves according to

equation (7.3) for 1 ≤ t < t∗; and τnt is determined by equation (7.1) for all t ≥ t∗.

Proof. See Appendix C.3.

Optimal capital income taxes are very similar to Economy 2 and for the same reasons.

Labor income taxes are determined by the same equation as in Economy 3 for t ≥ t∗. In

initial period, 1 ≤ t < t∗, while capital income taxes are at the upper bound, Rt = 1 < R∗t

and, therefore, equation (7.3) implies that labor income taxes should be increasing. Lump-

sum transfers are higher than the in Economies 2 and 3 since they are used to redistribute

the capital and labor income tax revenue.

Importantly, the optimal labor income taxes are quantitatively similar to the benchmark

results and its pattern over time and displays a similar qualitative feature, i.e. while

capital income taxes are at the upper bound, labor income taxes are increasing. This

44We can also calculate the path of Θt, which we displayed in a figure in the Online Appendix.
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Figure 14: Optimal Fiscal Policy with 4 nodes

Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with 17 nodes
(benchmark); Solid line: optimal transition with 4 nodes.

pattern follows immediately from equation (7.3) by setting τ kt+1 = 1. The high capital

income tax level distorts savings downwards, so having labor income taxes increase over

time “undoes” this distortion to some extent as it front-loads (after-tax) labor income which

increases savings. The only important qualitative difference between these results and the

benchmark ones are that here capital income taxes are set to zero in the long run.

8 Controlling the degree of inequality aversion

Figure 14 shows that the solution with 4 nodes (t∗,τ kt∗+1,τn1 , and T1) produces a reasonable

approximation for the benchmark solution, at least with respect to its basic features, it

leads to welfare gains of 4.65 percent relative to 4.74 percent in the benchmark results.

In this section, we use this approximation to explore the effects of changing the planner’s

degree of inequality aversion.

All the results presented so far used the same social welfare function: the utilitarian one,

which places equal Pareto weights on every agent. This implies a particular social preference

with respect to the equality-versus-efficiency trade-off. Here we consider different welfare

functions that rationalize different preferences about this trade-off. With this in mind we
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propose the following function

W σ̂ =

∫
S

E0

[
∞∑
t=0

βtv
(
xt
(
a0, e

t
))] 1−σ̂

1−σ

dλ0


1−σ
1−σ̂

,

where λ0 is the initial distribution over individual states (a0, e0). Following Benabou (2002),

we call σ̂ the planner’s degree of inequality aversion. First notice that if σ̂ = σ (the agents’

degree of risk aversion), maximizing W σ is equivalent to maximizing the utilitarian welfare

function. If σ̂ = 0, then maximizing W 0 is akin to maximizing efficiency as in Section ??,

that is, the planner has no redistributive concerns and focuses instead in the reduction of

distortions and the provision of insurance.45 Finally, it is easy to see that

lim
σ̂→∞

W σ̂ = min
(a0,e0)

E0

[
U
({
xt
(
a0, e

t
)})]

.

Hence, by choosing different levels for σ̂ we can place different weights on the equality

versus efficiency trade-off, from the extreme of completely ignoring equality (σ̂ = 0), passing

through the utilitarian welfare function (σ̂ = σ), and in the limit reaching the Rawlsian

welfare function (σ̂ →∞). Table 8 displays the results for different levels of σ̂.

Table 8: Controlling the degree of inequality aversion

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

Degree of Inequality Aversion. Benchmark: σ̂ = 2

σ̂ = 0.0 0 53.0 27.5 10.2 40.3 4.6 0.0 0.2 4.5

σ̂ = 1.0 35 69.3 31.0 15.6 -45.4 12.8 -2.4 0.9 14.6

σ̂ = 2.0∗ 51 61.2 35.4 16.8 -59.4 13.2 -4.3 1.8 16.1

σ̂ = 3.0 53 61.2 37.5 17.8 -65.4 13.1 -5.0 2.2 16.6

σ̂ = 4.0 54 61.5 38.5 18.4 -68.9 13.0 -5.5 2.4 16.7

σ̂ = 5.0 55 61.5 39.2 18.6 -70.9 12.9 -5.8 2.6 16.9

Notes: When σ̂ = 2 = σ the welfare function is utilitarian, this is the solution plotted in Figure 14. The
values for T/Y and B/Y are the ones from the final steady state. For the welfare decomposition we use
the utilitarian welfare function for comparability.

When σ̂ = 0 the planner has no redistributive motive and, accordingly, t∗ = 0. The

benchmark result that capital income taxes should be held fixed at the upper bound for

the initial periods is inherently linked to the redistributive motive of the planner. It follows

45Proposition 8 in Appendix B formalizes this claim.
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that higher σ̂ imply higher t∗’s (lower lump-sum-to-output ratios and higher debt-to-output

ratios). Otherwise, overall, specially for σ̂ ≥ 2, the results do not change significantly with

changes in σ̂. In particular, the final levels of capital and labor income taxes are, and the

composition of the welfare gains are remarkably similar.

9 Robustness

In this section we use the same 4-node approximation used in the previous one to evaluate

the robustness of the results with respect to changes in the labor-supply and intertemporal

elasticities, and the introduction of preference shocks such that labor supply is independent

of the productivity level.

9.1 Labor-supply and intertemporal elasticities

One parameter, σ, determines three important aspects of our benchmark experiment: the

agents’ intertemporal elasticity of substitution and relative risk aversion, and the planner’s

degree of inequality aversion. Table 9 contains the results for other choices of this parameter

and also for different levels of Frisch elasticity.

Table 9: Risk Aversion and Frisch Elasticity (Benchmark: σ = 2, κ = 0.72)

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

σ = 1.0 14 36.0 32.0 11.8 -8.9 3.5 -2.3 0.8 5.0

σ = 3.0 83 91.8 36.5 21.1 -85.6 22.6 -2.5 1.7 23.5

κ = 0.5 49 35.2 49.0 22.0 -83.6 23.1 -8.2 4.9 27.7

κ = 1.0 50 66.5 27.0 13.3 -41.5 11.2 -2.1 0.2 13.5

Benchmark 51 61.2 35.4 16.8 -59.4 13.2 -4.3 1.8 16.1

When σ is reduced from 2 to 1, the planner’s inequality aversion is reduced and, accord-

ingly, capital income taxes are kept at the upper bound for less periods (t∗ goes from 51

to 14). Moreover, the agents’ intertemporal elasticity of substitution increases and their

risk aversion is reduced which implies that long-run capital income taxes lead to, at the

same time, higher distortions and less benefits. It follows that the optimal long-run capital

income tax is lower. This also leads to a higher proportion of welfare gains coming from the

level effect and less coming from redistribution. The opposite happens when σ is increased

to 3. Intuitively, a higher Frisch elasticity implies a lower optimal labor income tax and

a higher associated level effect. Notice that these results are in line with the propositions
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established in Section 1.

9.2 Wealth effects and preference shocks

In the benchmark calibration productivity shocks affect the amount of labor supplied by

the agents, an effect that is magnified by the lack of wealth effects. It is possible to remove

this effect and make labor supply independent of the productivity shock, by introducing

a concomitant shock to the disutility of labor, i.e. setting χe = χ0e. We recalibrate the

model under this alternative assumption and compute the optimal policy which we present

in Table 10. Notice that the optimal policy and welfare decomposition are very similar. The

main difference being the lower long-run capital income taxes and higher t∗. As discussed

in Section 4.6, variations in these features of capital income taxes are close substitutes.

Table 10: Benchmark versus Calibration with Preference Shocks

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

Pref. Shocks 57 29.6 40.4 16.5 -74.4 16.0 -7.2 2.5 21.9

Benchmark 51 61.2 35.4 16.8 -59.4 13.2 -4.3 1.8 16.1

10 Conclusion

In this paper we quantitatively characterize the solution to the Ramsey problem in the

standard incomplete markets model. We find that even though the planner has the ability

to obtain all revenue via non distortive lump-sum taxes, it chooses instead to tax capital and

labor income at levels roughly consistent with the prevailing ones in the US. Moreover, we

show that to achieve redistribution it is optimal for the planner to set capital income taxes

at the imposed upper bound of 100 percent for several years. By decomposing the welfare

gains we diagnose that, relative to the current US tax system, this policy exacerbates the

amount of distortions to agents’ decisions. On the other hand, it leads to a substantial

amount of redistribution and insurance with the former being significantly more relevant

for the welfare gains associated with the optimal policy.

Finally, we do not view our results as a final answer to our initial question: how should

governments conduct fiscal policy in the presence of inequality and individual risk? The

model we use abstracts from important aspects of reality, as any useful model must, and

we miss some important dimensions. For instance, in the model studied above an agent’s

productivity is entirely a matter of luck, it would be interesting to understand the effects of
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allowing for human capital accumulation. We also assume the government has the ability to

fully commit to future policies, relaxing this assumption could lead to interesting insights.

The model also abstracts from international financial markets, capital income taxes as high

as the ones we find optimal in this paper are unlikely to survive if agents are able to move

their assets overseas.
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Appendix

This appendix presents concise versions of the proofs. Extensive versions with more details

are contained in a separate Online Appendix which can be found in our websites.46

A Proofs for two-period economies

A.1 Uncertainty economy

Define τ kR ≡ rτ k/ (1 + r). Six equations determine a tax distorted equilibrium (K,nL, nH , r, w;

τn, τ kR, T ) according to Definition 1: the first order conditions of the agent’s problem (one

intertemporal and two intratemporal), the first order conditions of the firm’s problem

r = fK (K,N) , and w = fN (K,N) , where N = πeLnL + (1− π) eHnH (10.1)

and the government’s budget constraint. Using equation (10.1) to substitute out for r

and w we are left with a system of four equations that any vector
(
K,nL, nH , τ

n, τ kR, T
)

of equilibrium values must satisfy. The two degrees of freedom are a result of the fact

that the planner has three instruments
(
τn, τ kR, T

)
that are restricted by one equation, the

government’s budget constraint. Defining welfare by

W ≡ u (ω −K, n̄) + βE
[
u
(
(1− τn) fN (K,N) eini +

(
1− τ kR

)
fK (K,N)K + T

)
, ni
]

and totally differentiating the four equilibrium equations together with this definition and

making the appropriate simplifications using Assumption 1 we obtain the following equation

(the algebra is tedious and, therefore, suppressed47):

dW = Θndτn + Θkdτ kR,

where Θn and Θk are complicated functions of equilibrium variables.48

Lemma 2 Under Assumption 1, in equilibrium nH > nL and uc (cL, nL) > uc (cH , nH).

The proof of this Lemma is contained in the Online Appendix.

46http://www.dyrda.info/ or http://sites.google.com/site/marcelozouainpedroni/
47Mathematica codes that compute all the algebraic steps are available in our websites.
48Here are the exact formulas:

Θk ≡ fKKUc
Φ

{
fNfKNN [(1− τn) (Vc − Uc) + τnκUc] + τkRfK (fN + fKNKκ)Uc

}
.

Θn ≡ fNN

(1− τn) Φ
{
(
1− τkR

)
f2
KfNK

[
(1− τn)

(
Ucc (Uc − Vc) + τkR (Vcc − Ucc)Uc

)
−
(
1− τkR

)
τnκUccUc

]
+ fN [(1− τn) (Vc − Uc) + τnκUc]

[(
1− τkR

)
fKNNUc −Ku0

cc

]
+
(
1− τkR

)
τkRfKNfKKκU

2
c }.
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Proof of Proposition 1. First notice that the optimal tax system must satisfy Θn = 0

and Θk = 0, otherwise there would exist variations in
(
τn, τ kR

)
∈ (−∞, 1)2 that would

increase welfare. Θk = 0 simplifies to θk1 + θk2τ
n + θk3τ

k
R = 0 where

θk1 ≡ fNfKNN (Vc − Uc) , θk2 ≡ fNfKNN ((1 + κ)Uc − Vc) , and θk3 ≡ fK (fN + κfKNK)Uc.

Solving this equation for τ kR, substituting it in Θn = 0 and simplifying entails

Vc (1− τn)− Uc (1− (1 + κ) τn) = 0.

Solving for τn we obtain equation (1.1) and substituting it back in the equation for τ kR we

obtain τ kR = 0; and, therefore, τ k = 0. This is the only pair
(
τn, τ kR

)
∈ (−∞, 1)2 that solves

the system Θn = 0 and Θk = 0. The fact that the optimal level of τn > 0 follows from

Lemma 2.

A.2 Inequality economy

The proof of Proposition 2 is entirely analogous and for that reason suppressed here. It

can be found in the Online Appendix.

B Welfare decomposition

Proof of Proposition 3. First notice that without uncertainty et = {e0}, so that

λt
(
a0, e

t
)

= λ0 (a0, e0) , and xt
(
a0, e

t
)

= xt (a0, e0) ,

for all (a0, e0). It follows from (4.4) that,

U ({x̄t (a0, e0)}) = U ({xt (a0, e0)}) ,

and, therefore,

η (a0, e0) = 1,

where

Uc ≡ β [πuc (cL, nL) + (1− π)uc (cH , nH)] , Ucc ≡ β [πucc (cL, nL) + (1− π)ucc (cH , nH)] ,

Vc ≡ β
[
πuc (cL, nL)

eLnL
N

+ (1− π)uc (cH , nH)
eHnH
N

]
,

Vcc ≡ β
[
πucc (cL, nL)

eLnL
N

+ (1− π)ucc (cH , nH)
eHnH
N

]
,

Φ ≡
(
1− τkR

) (
fKfNfKNKN ((1− τn) (Vcc − Ucc) + τnκUcc) + (fN + fKNKκ) f2

KKUcc − fNfKNNUc
)

+ (fN + fKNKκ)Ku0
cc.
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for all (a0, e0). Hence, we obtain

U
({
X̄t

})
=
∞∑
t=0

βtu
(
X̄t

) (4.6)
=

∞∑
t=0

βtv

(∫
x̄t (a0, e0) dλt (a0, e0)

)
(4.5)
=

∞∑
t=0

βtv

(∫
xt
(
a0, e

t
)
dλt
(
a0, e

t
))

=
∞∑
t=0

βtv (Xt) = U ({Xt}) ,

which establishes the result. Next, without inequality, we have that x̄jt (a0, e0) = X̄t for all

t and all (a0, e0).

Proof of Proposition 4. Notice that

U (a {xt}) = a1−σU ({xt}) . (10.2)

Suppressing the dependence on (a0, e0), it follows that∫
E0

[
U
({
xRt
})]

dλ0
(4.4)
=

∫
U
({
x̄Rt
})
dλ0

(4.8)
= U

((
1− pRine

) {
X̄R
t

}) (10.2)
=

(
1− pRine

)1−σ
U
({
X̄R
t

})
(4.7)
=
(
1− pRine

)1−σ
U
((

1− pRunc
) {
XR
t

}) (10.2)
=

((
1− pRine

) (
1− pRunc

))1−σ
U
({
XR
t

})
(4.3)
=
((

1− pRine
) (

1− pRunc
))1−σ

U
(
(1 + ∆L)

{
XNR
t

})
(10.2)

=
(
(1 + ∆L)

(
1− pRine

) (
1− pRunc

))1−σ
U
({
XNR
t

})
(10.2)

=

(
(1 + ∆L)

(
1− pRine

) (1− pRunc)
(1− pNRunc)

)1−σ

U
((

1− pNRunc
) {
XNR
t

})
(4.7)
=
(
(1 + ∆L) (1 + ∆I)

(
1− pRine

))1−σ
U
({
X̄NR
t

})
(10.2)

=

(
(1 + ∆L) (1 + ∆I)

(
1− pRine

)(
1− pNRine

))1−σ

U
((

1− pNRine
) {
X̄NR
t

})
(4.8)
= ((1 + ∆L) (1 + ∆I) (1 + ∆R))1−σ

∫
U
({
x̄NRt

})
dλ0

(4.7)
= ((1 + ∆L) (1 + ∆I) (1 + ∆R))1−σ

∫
E0

[
U
({
xNRt

})]
dλ0

(10.2)
=

∫
E0

[
U
(
(1 + ∆R) (1 + ∆I) (1 + ∆L)

{
xNRt

})]
dλ0.

The result, then, follows from the definition of ∆ in equation (4.2).

Proposition 8 If the certainty equivalents are constant over time, i.e. x̄jt (a0, e0) = x̄j (a0, e0)

for j = R,NR, then, maximizing W 0 =
(∫

E0 [U ({xt (a0, e
t)})]

1
1−σ dλ0 (a0, e0)

)1−σ
is equiv-

alent to maximizing (1 + ∆L) (1 + ∆I).
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Proof. First notice that, for j = R,NR,

E0

[
U
({
xjt

})] 1
1−σ (4.4)

= U
({
x̄j
}) 1

1−σ =

( ∞∑
t=0

βt
(
x̄j
)1−σ) 1

1−σ

=

(
1

1− β

) 1
1−σ

x̄j , (10.3)

and, therefore

∫
E0

[
U
({
xRt
})] 1

1−σ dλ0
(10.3)

=

∫ (
1

1− β

) 1
1−σ

x̄Rdλ0
(4.6)
=

(
1

1− β

) 1
1−σ

X̄R = U
({
X̄R
}) 1

1−σ

(4.7)
= U

((
1− pRunc

) {
XR
t

}) 1
1−σ =

(
1− pRunc

)
U
({
XR
t

}) 1
1−σ

(4.3)
=
(
1− pRunc

)
U
(
(1 + ∆L)

{
XNR
t

}) 1
1−σ

=

(
1− pRunc

)
(1− pNRunc)

(1 + ∆L)U
((

1− pNRunc
) {
XNR
t

}) 1
1−σ

(4.7)
= (1 + ∆I) (1 + ∆L)U

({
X̄NR

}) 1
1−σ

= (1 + ∆I) (1 + ∆L)

(
1

1− β

) 1
1−σ

X̄NR

(4.6)
= (1 + ∆I) (1 + ∆L)

∫ (
1

1− β

) 1
1−σ

x̄NRdλ0

(10.3)
= (1 + ∆I) (1 + ∆L)

∫
E0

[
U
({
xNRt

})] 1
1−σ dλ0

which establishes the result.

C Proofs for complete market economies

The proofs follow straight-forwardly the approach introduced by Werning (2007). Hence,

for details on the logic behind the procedure we refer the reader to Online Appendix where

we present more detailed versions of the proofs, here we focus mainly on the parts that

comprise our value added. We depart from Werning (2007) in following ways: we use the

GHH utility function (whereas he studies the separable and Cobb-Douglas cases), we do not

allow the Ramsey planner to choose time zero policies and impose an upper bound of 1 for

capital income taxes. These departures make the Ramsey planner’s problem comparable to

our benchmark experiment. The restriction on time zero policies is particularly important

because it prevents the planner from confiscating the (potentially unequal) initial capital

levels eliminating the corresponding redistribution motives.

Consider Economy 4 as described in Section 7. For simplicity, we assume that agents are

divided into a finite number of types i ∈ I of relative size πi. Type i has an initial asset

position of ai,0 and a productivity level of ei. Let pt denote the price of the consumption

good in period t in terms of period 0. Since markets are complete we can write down the
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present value budget constraint of the agent (remember that τ c is a parameter),

∞∑
t=0

pt ((1 + τ c) ci,t + ai,t+1) ≤
∞∑
t=0

pt ((1− τnt )wteini,t +Rtai,t + Tt) ,

where Rt ≡ 1 +
(
1− τ kt

)
rt. Rule out arbitrage opportunities by setting pt = Rt+1pt+1, and

define T ≡
∑∞

t=0 ptTt. Then, the budget constraint simplifies to

∞∑
t=0

pt ((1 + τ c) ci,t − (1− τnt )wteini,t) ≤ R0ai,0 + T . (10.4)

Similarly, the government’s budget constraint simplifies to

R0B0 + T +
∑
t

ptG =
∑
t

pt
(
τ cCt + τnt wtNt + τ kt rtKt

)
. (10.5)

The resource constraint is given by

Ct +G+Kt+1 = f (Kt, Nt) , for all t ≥ 0. (10.6)

Definition 6 Given {ai,0}, K0, B0 and
(
τn0 , τ

k
0 , T0

)
, a competitive equilibrium is a policy

{τnt , τ kt , Tt}∞t=1, a price system {pt, wt, rt}∞t=0, and an allocation {ci,t, ni,t, Kt+1}∞t=0, such

that: (i) agents choose {ci,t, ni,t}∞t=0 to maximize utility subject to budget constraint (10.4)

taking policies and prices (that satisfy pt = Rt+1pt+1) as given; (ii) firms maximize profits;

(iii) the government’s budget constraint (10.5) holds; and (iv) markets clear: the resource

constraints (10.6) hold.

Given aggregate levels Ct and Nt, individual consumption and labor supply levels can be

found by solving the following static subproblem

U (Ct, Nt;ϕ) ≡ max
ci,t,ni,t

∑
i

πiϕiu (ci,t, ni,t) s.t.
∑
i

πici,t = Ct and
∑
i

πieini,t = Nt

(10.7)

where u is given by equation (3.1), for some vector ϕ ≡ {ϕi} of market weights ϕi ≥ 0. Let

cmi,t (Ct, Nt;ϕ), and nmi,t (Ct, Nt;ϕ) be the argmax of this problem. It can be shown that49

49Where constants are defined as follows:

ωci ≡
(ϕi)

1
σ∑

j πj (ϕj)
1
σ

, ωni ≡
(ei)

κ∑
j πj (ej)

1+κ , Ωc ≡

(∑
i

πi (ϕi)
1
σ

)σ
, and Ωn ≡

∑
j

πj (ej)
1+κ

− 1
κ
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cmi,t (Ct, Nt;ϕ) = ωciCt + χ
κ

1 + κ

(
(ωni )

1+κ
κ − ωciΩn

)
(Nt)

1+κ
κ

nmi,t (Ct, Nt;ϕ) = ωni Nt

U (Ct, Nt;ϕ) =
Ωc

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)1−σ

Then, implementability constraints can be written as

∞∑
t=0

βt(UC (Ct, Nt;ϕ) cmi,t (Ct, Nt;ϕ) + UN (Ct, Nt;ϕ) ein
m
i,t (Ct, Nt;ϕ)) (10.8)

= UC (C0, N0;ϕ)

(
R0ai,0 + T

1 + τ c

)
for all i ∈ I

Proposition 9 An aggregate allocation {Ct, Nt, Kt+1}∞t=0 can be supported by a competitive

equilibrium if and only if the resource constraints (10.6) hold and there exist market weights

ϕ and a lump-sum tax T so that the implementability conditions (10.8) hold for all i ∈ I.

Individual allocations can then be computed using functions cmi,t and nmi,t, prices and taxes

can be computed using the usual equilibrium conditions.

The Ramsey problem is that of choosing policies
{
τnt , τ

k
t , Tt

}∞
t=1

, taking {ai,0}, K0, B0

and
(
τn0 , τ

k
0 , T0

)
as given, to maximize a weighted sum of the individual utilities,

∞∑
t=0

βtπiλiu (ci,t, ni,t) , (10.9)

where {λi} are the welfare weights normalized so that
∑

i πiλi = 1 with λi ≥ 0, subject to

allocations and policies being a part of a competitive equilibrium and τ kt ≤ 1 for all t ≥ 1.

First notice that in equilibrium it must be that UC (t) = β
(
1 +

(
1− τ kt+1

)
rt+1

)
UC (t+ 1),

so that

UC (t) ≥ βUC (t+ 1) , (10.10)

is equivalent to τ kt+1 ≤ 1. Moreover, notice that τ k0 and T0 have not been substituted out

in the implementability constraint. The fact that τn0 is given together with the equilibrium

condition (1− τn0 )w0 = −UN (0) /UC (0) is equivalent to

N0 = N̄0, (10.11)

where N̄0 is defined implicitly as a function of variables given to the Ramsey planner,

(1− τn0 ) fN
(
K0, N̄0

)
= Ωnχ

(
N̄0

) 1
κ .
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Finally, we can use Proposition 9 to rewrite the Ramsey problem as that of choosing {Ct,
Nt+1, Kt+1}∞t=0, T , and ϕ to maximize (10.9) subject to (10.6) for all t ≥ 0, (10.8) for all

i ∈ I with multiplier µi, (10.10) for all t ≥ 0 with multiplier ηt, and (10.11). Equivalently,

we can write it as that of solving the following auxiliary problem

max
{Ct,Nt+1,Kt+1}∞t=0,T,ϕ

∞∑
t=0

βtW (Ct, Nt;ϕ, µ, λ)− UC (C0, N0;ϕ)
∑
i∈I

πiµi

(
R0ai,0 + T

1 + τ c

)
,

subject to (10.6) for all t ≥ 0, (10.10) for all t ≥ 0, and (10.11), where

W (Ct, Nt;ϕ, µ, λ) ≡
∑
i

πi{λiu
(
cmi,t (Ct, Nt;ϕ) , nmi,t (Ct, Nt;ϕ)

)
+ µi

(
UC (Ct, Nt;ϕ) cmi,t (Ct, Nt;ϕ) + UN (Ct, Nt;ϕ) ein

m
i,t (Ct, Nt;ϕ)

)
}.

With some algebra it can be shown that50

W (Ct, Nt;ϕ, µ, λ) =
1

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)−σ
∗
(

ΦCt − (Φ + (1− σ) Ψ) Ωnχ
κ

1 + κ
(Nt)

1+κ
κ

)
(10.12)

Define R∗t ≡ 1 + rt and

η−1 ≡
R0

β (1 + τ c)

∑
i

πiµiai,0,

and first order conditions (for the following proofs we need only necessary conditions)

together with equilibrium conditions imply the following equations51

∑
i

πiµi = 0 (10.13)

τnt + τ c

1 + τ c
=

ΨΘt

ΦΘt + Ψ (σ + Θt) + Υtσ (βηt−1 − ηt)
, for t ≥ 1 (10.14)

Rt+1

R∗t+1

=
ΦΘt+1 + Ψσ + Υt+1σ (βηt − ηt+1)

ΦΘt + Ψσ + Υtσ (βηt−1 − ηt)
Θt

Θt+1

, for t ≥ 0 (10.15)

50Where constants are defined as follows:

Φ ≡ (Ωc)
σ−1
σ

∑
i

πi(ϕi)
1
σ

(
λi
ϕi

+ (1− σ)µi

)
, and Ψ ≡ Ωc

κ

∑
j

πjµjejω
n
j .

51Where Υt ≡ Ωc/(1− σ)Ωnχ κ
1+κ (Nt)

1+κ
κ .
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Notice that Υt > 0 and Θt > 0, for all t ≥ 0.

C.1 Economy 2

Lemma 3 If ei = 1 for all i ∈ I, then Ψ = 0 and Φ > 0.

Proof. If ei = 1 for all i ∈ I, then it follows from the definition of Ψ that

Ψ =
Ωc

κ

∑
j πjµj (ej)

1+κ∑
j πj (ej)

1+κ =
Ωc

κ

∑
j πjµj∑
j πj

= 0,

where the last equality follows from equation (10.13). Since Ψ = 0, it follows from equation

(10.12) that

W (Ct, Nt;ϕ, µ, λ) =
Φ

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)1−σ

.

If Φ ≤ 0 it would be optimal to set Ct = 0 for all t ≥ 0 which cannot be a solution to the

initial Ramsey problem.

Proof of Proposition 5. Using Lemma 3, from equation (10.14) it follows that

τnt = −τ c, for t ≥ 1.

Next, suppose ηt = 0, for all t ≥ 0. Then, it follows from (10.15) that τ k1 < 1 if

− 1

β

ΦΘ0

Υ0σ
≡ P1 < η−1 < M1 ≡

1

β

(R∗1 − 1) ΦΘ0

Υ0σ
,

and that τ kt = 0 for t ≥ 2. Hence, if P1 < η−1 < M1, the constraints will in fact never be

binding. Now, suppose ηt > 0, for t ≤ t∗ − 2 and ηt = 0, for all t ≥ t∗ − 1, then it follows

from (10.15) that τ kt∗ < 1 if

−
t∗∑
τ=1

1

βτ
ΦΘτ−1

Υτ−1σ
≡ Pt∗ < η−1 < Mt∗ ≡

t∗∑
τ=1

1

βτ

(∏t∗

t=τ R
∗
t − 1

)
ΦΘτ−1

Υτ−1σ
,

and that τ kt = 0 for t ≥ t∗ + 1. The result follows from the fact that η−1 is finite,

limt→∞ Pt = −∞ and limt→∞Mt =∞.
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C.2 Economy 3

Proof of Proposition 6. In this economy there is no heterogeneity in initial levels of

asset, i.e. ai,0 = a0 for all i ∈ I. Then it follows that

η−1 =
R0

β (1 + τ c)

∑
i

πiµiai,0 =
R0

β (1 + τ c)
a0

∑
i

πiµi = 0

where the last equality follows from equation (10.13). Since here we assume that τ kt does

not have to be bounded by 1, it follows that ηt = 0 for all t ≥ 1. Then, equation (7.1)

follows directly from equation (10.14), (7.2) from its derivative with respect to Θt, and (7.3)

from equations (10.14) and (10.15).

C.3 Economy 4

Proof of Proposition 7. Equation (7.3) can be established for all t ≥ 1, by substituting

(10.14) into (10.15). The existence of a t∗ such that ηt > 0, for t < t∗− 1 and ηt = 0, for all

t ≥ t∗ − 1, follows from a very similar logic to the one used in the proof of Proposition 5,

which we suppress here.52 Hence, for t ≥ t∗ we can obtain τnt by using (7.1), which follows

from (10.14) with ηt = 1. For the same time period τ kt can then be found by using (7.3).

Now, having τnt∗ we can use the fact that τ kt = 1 and (7.3) moving backwards to obtain τnt
for t < t∗.

52With

Pt∗ ≡ −
t∗∑
τ=1

1

βτ
ΦΘτ−1 + Ψσ

Υτ−1σ
, and Mt∗ ≡

t∗∑
τ=1

1

βτ

(∏t∗

t=τ R
∗
t − 1

)
ΦΘτ−1 +

(
Θτ−1

Θt∗

∏t∗

t=τ R
∗
t − 1

)
Ψσ

Υτ−1σ

65



D Figures
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Figure 15: Aggregates: Benchmark

Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition.
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