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Abstract

In a standard incomplete markets model, a Ramsey planner chooses time-varying
paths of proportional capital and labor income taxes, lump-sum transfers (or taxes),
and government debt. Distortive taxes reduce the variance cross-sectionally and over
time of after-tax income, improving welfare for redistributive and insurance motives,
which we quantify with a new welfare-decomposition method. Optimal levels of
capital and labor income taxes are roughly consistent with the prevailing ones in the
US—in the long run for a utilitarian planner, and from the start for a planner that
disregards equality concerns. High initial capital income taxes are an effective way to
provide redistribution and are used in proportion to the planner’s degree of inequality
aversion. Optimal debt dynamics is substantially affected by the planner’s degree of
inequality aversion. The welfare function is relatively flat with respect to movements
in long-run fiscal instruments. Ignoring transition or the dynamics of taxes over time
can be severely misleading.
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How should governments conduct fiscal policy in the presence of inequality and individ-
ual risk? This paper provides a quantitative answer to this question. We address it by
solving a Ramsey problem in a general equilibrium model with heterogeneous agents and
uninsurable idiosyncratic labor income risk, originally developed and analyzed by Bewley
(1986), Imrohoruglu (1989), Huggett (1993), and Aiyagari (1994), and from now on referred
to as the standard incomplete markets (SIM) model.

The SIM model has been used extensively for positive analysis and has been relatively
successful at matching some basic facts about inequality and income risk.1 In this environ-
ment, agents face risk with respect to their individual labor productivity, which they cannot
directly insure against (only a risk-free asset is available). Depending on their productivity
realizations, they make different savings choices, which lead to endogenous inequality. As
a result, on top of the usual concern about not distorting agents decisions, a Ramsey plan-
ner has two additional objectives: to redistribute resources across agents, and to provide
insurance against their idiosyncratic productivity risk.

The study of optimal fiscal policy in the SIM model has focused mainly on the max-
imization of steady state welfare.2 In contrast, we allow policy to be time varying and
the welfare function to depend on the associated transition path which amounts to the
typical Ramsey optimal taxation problem. This paper is the first to directly address this
problem. We calibrate the initial steady state to replicate several aspects of the US econ-
omy, in particular the fiscal policy, the distribution of wealth, earnings and income, and
statistical properties of the individual labor income process. The final steady state is, then,
endogenously determined by the optimal path of fiscal policy. As is usual in the Ramsey
literature, the planner finances an exogenous stream of government expenditures with the
following instruments: proportional capital and labor income taxes, and government debt.
In contrast with most of the Ramsey literature, however, we allow for (possibly negative)
lump-sum transfers. This would render the problem trivial in a representative-agent model,
but that is not the case here.

Main findings. Our main findings can be summarized as follows:

1. Optimal levels of capital and labor income taxes are roughly consistent with the pre-
vailing ones in the US—in the long run for a utilitarian planner and from the start for a
planner that disregards equality concerns. High initial capital income taxes and higher

1See, for instance, Domeij and Heathcote (2004); Castañeda, Díaz-Giménez and Ríos-Rull (2003); Heath-
cote, Storesletten and Violante (2009); and Nardi and Fella (2017).

2See, for instance, Aiyagari and McGrattan (1998), Conesa, Kitao and Krueger (2009), and Nakajima
(2010). Notable exceptions are Krueger and Ludwig (2016) and Bakis, Kaymak and Poschke (2015) which
solve for the optimal once-and-for-all change in policy and account for transitory effects.
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overall labor income taxes are an effective way to provide redistribution and are used in
proportion to the planner’s degree of inequality aversion.

2. Optimal government debt dynamics is driven by the planner’s degree of inequality
aversion—the utilitarian planner calls for asset accumulation, a planner that disregards
inequality for debt accumulation. Debt dynamics have significant general equilibrium
price effect which, in turn, quantitatively important effects on the provision of insurance
and redistribution.

3. The welfare function is relatively flat with respect to movements in long-run fiscal in-
struments. Our quantitative results show that the focus on long-run Ramsey policies in
the SIM model is misguided.3

4. Ignoring transition or the dynamics of taxes over time can be severely misleading. Our
contribution here is to quantify the importance of the transition both for the optimal
fiscal instruments and for the associated welfare gains.

The optimal policy. For a utilitarian planner, our benchmark, we find that optimal
capital income taxes are front-loaded, hitting the imposed upper bound of 100 percent for
53 years before decreasing to 42 percent in the long run. Labor income taxes gradually
increase from 28 percent towards a final level of 41 percent. In the initial stationary
equilibrium the capital and labor income taxes are set to their US counterparts: 36 and
28 percent, respectively. The ratio of lump-sum transfers to output is roughly doubled to
about 16 percent and the government initially accumulates assets only to then return to
a level of debt-to-output of about 40 percent in the long run—over the optimal transition
government assets reach a level close to 100 percent of GDP. Relative to keeping fiscal
instruments at their initial levels, this leads to a welfare gain equivalent to a permanent
13.9 percent increase in consumption.

Why use distortive taxes? Labor and capital income taxes are distortive; however,
they are used to provide insurance and redistribution. The only risk that agents face, in
the SIM model, is with respect to their labor productivities.4 By taxing labor income and
rebating the extra revenue via lump-sum, the planner reduces the proportion of the agents’
3By long-run we mean when the economy reaches the final stationary equilibrium. Part of the reason
welfare is flat with respect to long-run instruments is because the convergence to the final steady state
takes a very long time: about 200 years in our main results.

4Panousi and Reis (2012) and Evans (2014) focus instead on investment risk. One justification for our
focus on labor income risk is the fact that it is a bigger share of the total income for most agents in the
economy. The bottom 80 percent in the distribution of net worth have a share of labor income above 77
percent in the 2007 SCF.
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income that is uncertain and effectively provides insurance. On the other hand, capital
income is particularly unequal and by taxing it the planner reduces the proportion of
unequal income in total income and, in this way, provides redistribution. To demonstrate
exactly how the optimal policy reacts to changes in risk and inequality we provide an
analytic characterization of the solution to the Ramsey problem in a simple two-period
version of the SIM model. In particular, we show that a higher intertemporal elasticity
of substitution (Frisch elasticity) reduces the optimal capital (labor) income tax since it
aggravates the distortions associated with it. The effect of government debt is more subtle.
By decreasing debt the government crowds in capital which affects prices indirectly, in
particular increasing wages and reducing interest rates, which leads to a more uncertain
but less unequal distribution of income. The optimal fiscal policy weighs all these effects
against one another.

Welfare decomposition. To disentangle the main forces behind the optimal policy, we
introduce a new procedure to decompose welfare gains5 into what comes from the reduction
of distortions to agent’s decisions, from redistribution (the reduction of ex-ante risk) and
from insurance (the reduction of ex-post risk). Applying this decomposition to our main
results we find that the average welfare gains of 13.9 percent associated with implement-
ing the optimal policy: (i) −4.8 percent comes from an increase in distortions to agents’
decisions; (ii) 16.8 percent comes from redistribution; and (iii) 2.4 percent comes from the
extra insurance provided by the fiscal policy. The optimal policy implies an overall increase
of capital and labor income taxes which distort agents’ savings and labor supply decisions
more, leading aggregate resources to be less efficiently allocated. On the other hand, re-
bating the revenue of the higher taxes via lump-sum transfers, especially the higher capital
income taxes in the initial periods when the links with the individual ex-ante states are still
strong, decreases the proportion of the agents’ income associated with the ex-ante unequal
income and leads to the redistributional gains. Finally, the same mechanism acts to lower
the proportion of the agents’ income that is risky ex post leading to the positive insurance
effect.

The role of redistribution. We also use the welfare decomposition to consider a Ramsey
planner that disregards equality concerns. The welfare gains are, then, equivalent to a
permanent 3.4 percent increase in consumption; 1.2 percent comes from the reduction in
distortions and 2.2 percent from the provision of insurance. The much lower welfare gains
are consistent with the fact that most welfare gains in the benchmark come from redis-
5The procedure is based on welfare decomposition used in Floden (2001) and Benabou (2002), but modified
to handle transitory effects.
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tribution. Optimal long-run capital and labor income taxes are set to 45 and 29 percent,
respectively. Moreover, capital income taxes do not hit the upper bound, and instead move
immediately to a value close to the long-run level, which is indicative that this feature of the
benchmark results is mainly driven by the redistributive motive of the utilitarian planner.
Lump-sum transfers are front loaded and, thus, the government accumulates debt, up to
more than 300 percent of GDP. This relaxes borrowing constraints and provides insurance
via general equilibrium price effects. We also consider an experiment allowing the planner
to expropriate asset positions in the first period. Surprisingly, we find that even though 99

percent of asset holds are expropriated, it is still optimal to keep high capital income taxes.
They are still beneficial for insurance and redistribution purposes, and the downward dis-
tortions on capital accumulation are counteracted by the lower elasticity of savings (since
agents are rebuilding their precautionary buffers) and the crowding in of capital that results
from the immense revenue obtained via the levy. Finally, we study an alternative welfare
function which allows us to directly control the degree of inequality aversion of the planner,
the weight put on equality concerns. The more the planner “cares” about inequality the
longer it keeps capital income taxes in the upper bound, the higher the labor income taxes,
and the lower the long-run debt-to-output ratio.

The importance of transition. Disregarding transitory welfare effects in Ramsey prob-
lems can be severely misleading. To make this point, we compute the stationary fiscal
policy that maximizes welfare in the final steady state and show that it is substantially
different from the optimal ones, since it ignores transitory effects and the costs associated
with accumulating capital and reducing government debt. Moreover, even when the tran-
sition is taken under consideration, but taxes are restricted to being constant over time,
the results are misleading, especially if one is interested in the long-run values for the fiscal
instruments. The optimal taxes in this case are close to the short-run values of the dynamic
optimal ones with capital income taxes, for instance, being set to 96 percent.

The role of market incompleteness. To illustrate the role of market incompleteness
and highlight why and how our results differ from the ones in the complete-markets Ramsey
literature, we develop the following build-up. We start from the representative agent econ-
omy and sequentially introduce: heterogeneity in initial assets; different (but constant and
certain) individual productivity levels; and, finally, uninsurable idiosyncratic productivity
risk which adds up to the SIM model. At each intermediate step, we analytically charac-
terize6 and then numerically compute the optimal fiscal policy over transition identifying
the effect of adding each feature. In particular, we show that the planner chooses to keep
6We build on the methodology developed in Werning (2007).
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capital income taxes at the upper bound in the initial periods if there is asset heterogeneity,
before reducing it to zero. Productivity heterogeneity rationalizes positive (and virtually
constant) labor income taxes. The key qualitative difference of the solution once uninsur-
able idiosyncratic productivity risk is introduced is that long-run capital income taxes are
set to a positive level, which therefore must have to do with the provision of insurance. A
contribution of this paper is to quantify the optimal long-run capital income taxes in the
SIM model—which to our knowledge has not been done before—as well as to highlight the
role of debt dynamics which is indeterminate in a complete-markets model.

Related Literature

Assuming the existence of a Ramsey steady state, Aiyagari (1995) provides a rationale
for positive long-run capital income taxes in the SIM model.7 A recent study by Chen,
Chien and Yang (2018) revisits this result and shows that, with no bounds on government
debt, a Ramsey steady state may not exist.8 Relative to the environments in Aiyagari
(1995) and Chen, Chien and Yang (2018) the Ramsey planner in this paper has access
to lump-sum transfers as an additional instrument. Moreover, as in Aiyagari (1995) we
require government debt to be mean-preserving. We view the contribution of this paper
as quantifying the gains from the optimal fiscal policy conditional on finitely many policy
adjustments over time, which essentially ensures the existence of the long-run steady state of
the economy. Importantly, our computational algorithm does not rely on properties of the
Ramsey long-run steady state. Instead, we verify ex post and independently of the solution
method whether theoretical properties of the Ramsey steady state hold. In particular, we
find that in the long-run steady state the modified golden rule does (approximately) hold.

Gottardi, Kajii and Nakajima (2015) and Heathcote, Storesletten and Violante (2017)
characterize analytically the optimal fiscal policy in stylized versions of the SIM model.
Krueger and Ludwig (2018) do the same in an overlapping generations setup. Their ap-
7Assuming the existence of a Ramsey steady state, Aiyagari shows that the modified golden rule has to
hold at the optimum. At that associated interest rate, aggregate savings of agents with precautionary
motive for savings would grow without bounds. Hence, Aiyagari (1995) concludes that a positive capital
income tax must be imposed. Complementarily, Chamley (2001) shows, in a partial equilibrium version
of the SIM model, that enough periods in the future every agent has the same probability of being in
each of the possible individual (asset/productivity) states. It is, therefore, Pareto improving to transfer
from the consumption-rich to the consumption-poor in the long run. If the correlation of asset holdings
with consumption is positive, this transfer can be achieved by a positive capital income tax rebated via
lump-sum.

8Chien and Wen (2017), in an analytically tractable version of the SIM model, show that the modified
golden rule holds if and only if the government can issue a sufficient amount of debt to enable households
to achieve full self-insurance.
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proaches lead to elegant and insightful closed-form solutions. However, the simplifications
in these models do not allow them to match some aspects of the data, in particular the level
of wealth inequality, which we find to be important for the determination of the optimal
tax system.

The set of papers that tackle the issue of characterizing the optimal transition in a quan-
titative framework with heterogeneity is limited.9 Itskhoki and Moll (2018) study optimal
dynamic development policies in an incomplete markets model where heterogeneous produc-
ers are subject to financial frictions. To solve for the optimal transition they adopt a similar
approach to ours, parametetrizing the time paths of tax instrument using exponential func-
tion of time, we use the more flexible family of functions—cubic splines. Nuño and Thomas
(2016) use a novel continuous-time technique to solve for optimal monetary policy, includ-
ing optimal transition, in a version of the incomplete markets model with money. Ragot
and Grand (2017) solve the Ramsey problem in the SIM model with aggregate technology
shocks by truncating the histories of idiosyncratic shocks. Acikgoz, Hagedorn, Holter and
Wang (2018) argue that the long-run fiscal policy, in the SIM model, can be characterized
independently of initial conditions. They compute it and solve backwards for the optimal
transition towards the initial steady state. In contrast, our paper solves the Ramsey prob-
lem forward, and highlights the quantitative importance of the short-run dynamics of the
optimal policy.10

We also contribute to the literature studying the nexus between government debt and
market incompleteness. In an influential paper Aiyagari and McGrattan (1998) compute
the level of debt-to-output that maximizes steady state welfare. Interestingly, they find
that the optimal level is very close to the actual level in the data at that time, around 67

percent. Their calibration procedure focuses on matching the properties of the labor income
process. Röhrs and Winter (2017) replicate their experiment with a calibration that targets
wealth inequality statistics and find the opposite result, i.e. the government chooses to hold
high levels of assets. Our calibration replicates wealth, income and earnings inequality as
well as the statistical properties of the labor income, hence we capture the main forces
determining the dynamics of government debt over optimal transition and in the long run.
Bhandari, Evans, Golosov and Sargent (2017) investigate the role of government debt in
an economy with heterogeneity and aggregate risk. They find that the introduction of ad
hoc borrowing constraints is welfare improving since it allows the Ramsey planner to affect
9Though, there is a vast literature analyzing the optimal policy in the steady state - for instance Conesa,
Kitao and Krueger (2009) in an overlapping generations SIM model - or the optimal policy in the long
run including transitory effects - Krueger and Ludwig (2016) or Bakis, Kaymak and Poschke (2015).

10We discuss the relationship between our results and theirs in Section 4.6 and in the Online Appendix.
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general equilibrium prices. A similar logic is relevant for understanding our benchmark
results.

An extensive literature studies the Ramsey problem in complete-market economies with
heterogeneity. The most well known result for the deterministic subset of these economies is
due to Judd (1985) and Chamley (1986): capital income taxes should converge to zero in the
long run. Among others, Jones, Manuelli and Rossi (1997) and Atkeson, Chari and Kehoe
(1999) show this result is robust to a relaxation of a number of assumptions. However,
this result has been challenged by Straub and Werning (2014) who show that it can indeed
be optimal to tax capital in the long run. Chari, Nicolini and Teles (2018) remove the
Ramsey planner’s ability to expropriate initial capital holdings and show that long-run
capital income taxes should again be set to zero. The Ramsey planner in this paper also
wants to expropriate capital holdings, but for a different reason: not to mimic lump-sum
taxes since those are available, but to provide redistribution. Our experiment considering
a planner that does not want to provide redistribution is, in this sense, related to the one
in Chari, Nicolini and Teles (2018), though we still find optimal long-run capital income
taxes to be positive. Werning (2007) characterizes optimal policy for this class of economies
using the same set of fiscal instruments that we use, in particular, allowing for lump-sum
transfers or taxes. Greulich, Laczó and Marcet (2016) characterize and compute Pareto
improving capital and labor income taxes in the same setup. In Section 7 we characterize
analytically and provide quantitative results for the optimal fiscal policy with complete
markets in our environment and link the results to these studies.

Dávila, Hong, Krusell and Ríos-Rull (2012) solve the problem of a planner in the SIM
model that is restricted to satisfy agents’ budget constraints, but is allowed to choose the
savings of each agent. If the consumption-poor’s share of labor income is higher than
the average, increasing the aggregate capital stock relative to the undistorted equilibrium
can improve welfare through its indirect effect on wages and interest rates. In our setup,
the Ramsey planner affects after tax prices directly to achieve the same goal. Section 1.4
contains a more detailed discussion of the relationship between our results and theirs.

The rest of the paper is organized as follows. Section 1 illustrates the main mechanism
behind our results in a two-period economy. Section 2 describes the infinite horizon model,
sets up the Ramsey problem and discusses our solution technique. Section 3 describes the
calibration. Section 4 presents the main results of the paper, the welfare decomposition
procedure. Section 5 considers a planner that disregards equality concerns and a utilitarian
planner that can choose to expropriate capital. Section 6 discusses the importance of
considering transitory effects. Section 7 presents the build-up from the complete market
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economy results to our main results. Section 8 provides results for alternative welfare
functions and calibrations and Section 9 concludes.

1 Mechanism: Two-Period Economy
In the SIM model, there are two dimensions of heterogeneity: productivity and wealth.
Agents have different levels of productivity which follow an exogenous stochastic process.
In addition, markets are incomplete and only a risk-free asset exists. Therefore, the idiosyn-
cratic productivity risk cannot be diversified away. It follows that the history of shocks
affects the amount of wealth accumulated by each agent and there is an endogenously de-
termined distribution of wealth. In a two-period economy, it is possible to evaluate how
each dimension of heterogeneity affects the optimal tax system. Since there is no previous
history of shocks, the initial wealth inequality can be set exogenously. In this section, we
characterize, under some assumptions about preferences, the optimal tax system when the
government has access to linear labor and capital income taxes, and lump-sum transfers.
The lump-sum transfers are allowed to be negative, and the government could finance all
necessary revenue with this non-distortive instrument. In this section we explain why it
chooses to do otherwise. First, we assume agents have the same level of wealth but face an
idiosyncratic productivity shock; we call this the risk economy. Then, we shut down risk
and introduce ex-ante wealth inequality; this is referred to as the inequality economy. Next
we discuss the relationship with the infinite horizon problem.11

1.1 Risk economy

Consider an economy with a measure one of ex-ante identical agents who live for two
periods. Suppose they have time-additive, von Neumann-Morgenstern utility functions.
Denote the period utility function by u (c, n) where c and n are the levels of consumption
and labor supplied. Assume u satisfies the usual conditions and denote the discount factor
by β. In the first period each agent is endowed with ω units of the consumption good
which can be either consumed or invested into a risk-free asset, a, and supplies n̄ units
of labor inelastically. In period 2, consumers receive income from the asset they saved in
period 1 and from labor. Labor is supplied endogenously by each agent in period 2 and the
individual labor productivity, e, is random and can take two values: eL with probability
π and eH > eL with probability 1 − π, with the normalization πeL + (1− π) eH = 1. Due
to the independence of shocks across consumers, a law of large numbers operates so that
11The Online Appendix discusses the case in which there is risk and inequality.
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in period 2 the fraction of agents with eL is π and with eH is (1− π). Letting ni be the
labor supply of an agent with productivity ei, it follows that the aggregate labor supply is
N = πeLnL + (1− π) eHnH .

The planner needs to finance an expenditure of G in period 2. It has three instruments
available: labor and capital income taxes, τn and τ k, and lump-sum transfers T , which can
be positive or negative. Let w be the wage rate and r the interest rate. The total period 2

income of an agent with productivity ei is, therefore, (1− τn)weini+
(
1 +

(
1− τ k

)
r
)
a+T .

In period 2, output is produced using capital, K, and labor and a constant-returns-to-scale
neoclassical production function f (K,N). We assume that f (·) is net of depreciation.

Definition 1 A tax distorted competitive equilibrium is a vector (K,nL, nH , r, w; τn,
τ k, T ) such that

1. (K,nL, nH) solves

max
a,nL,nH

u (ω − a, n̄) + βE [u (ci, ni)] s.t. ci = (1− τn)weini+
(
1 +

(
1− τ k

)
r
)
a+ T ;

2. r = fK (K,N), w = fN (K,N), where N = πeLnL + (1− π) eHnH ;

3. and, τnwN + τ krK = G+ T .

The Ramsey problem is to choose τn, τ k, and T to maximize welfare. Since agents
are ex-ante identical there is no ambiguity about which welfare function to use, it is the
expected utility of the agents. If there is no risk, i.e. eL = eH , the agents are also ex-
post identical and the usual representative agent result applies: since negative lump-sum
transfers are available, it is optimal to obtain all revenue via this undistortive instrument
and set τn = τ k = 0.

In order to provide a sharp characterization of the optimal tax system we make the
following assumption discussed below.12

Assumption 1 No income effects on labor supply and constant Frisch elasticity, κ, i.e.

ucn − ucc
un
uc

= 0, and uccun
n (uccunn − u2cn)

= κ.
12In a similar two-period environment, Gottardi et al. (2014) characterize the solution to Ramsey problem
without Assumption 1. However, they impose an alternative assumption about the sign of general
equilibrium effects, which are satisfied under Assumption 1. Further, this assumption allows us to provide
a sharper characterization of the optimal tax system (besides the signs of taxes we also characterize the
levels).
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We pursue a variational approach. Suppose
(
K,nL, nH , r, w; τ

n, τ k, T
)
is a tax distorted

equilibrium.13 Consider a small variation on the tax system
(
dτn, dτ k, dT

)
, such that all

the equilibrium conditions are satisfied. Then, evaluate the effect of such a variation on
welfare, taking as given the optimal decision rules of the agents. Using this method we
establish the following proposition.

Proposition 1 In the risk economy, if u satisfies Assumption 1, then, the optimal tax
system is such that τ k = 0,

τn =
(ν − 1) π(1− π) (eHnH − eLnL)

(ν − 1) π(1− π) (eHnH − eLnL) + κN (πν + (1− π))
> 0, (1.1)

where ν ≡ uc(cL,nL)
uc(cH ,nH)

, and T balances the budget.

Proof. See Appendix A.1.

The planner could choose to finance G using only T but chooses a positive distortive labor
income tax instead. The revenue from labor taxation is rebated via lump-sum transfers
and the proportion of the agents’ income that comes from the uncertain labor income is
reduced. Hence, this tax system effectively provides insurance to the agents. Why not
provide full insurance by taxing away all the labor income? This is exactly what would
happen if labor were supplied inelastically. In fact, in this case κ = 0 and equation (1.1)

implies τn = 1. However, with an endogenous labor supply the planner has to balance two
objectives: minimize distortions to agents’ decisions and provide insurance. This balance is
explicit in equation (1.1) since a higher κ implies a lower τn. That is, the more responsive
labor supply is to changes in labor income taxes the more distortive these taxes are and
the planner chooses a lower labor income tax. In the limit, if κ → ∞ it will be optimal to
set τn = 0.

With income effects on labor supply, distortions of the savings decision would spill over to
the labor supply decision and vice-versa. Thus, it could be optimal, for instance, to choose
τ k so as to mitigate the distortion imposed by a positive τn. This complex relationship
complicates the analysis considerably. Assumption 1 unties this relationship and as a result
it is optimal to set τ k = 0.

Next, suppose that eL = 1− ϵrisk/π and eH = 1 + ϵrisk/ (1− π), so that ϵrisk is a mean-
preserving spread on the productivity levels. It is easy to see that if ϵrisk = 0 equation (1.1)

13Since the equilibrium does not exist for τn ≥ 1 or τk ≥ (1 + r) /r, we impose the restrictions that τn < 1
and τk < (1 + r) /r.
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implies that τn = 0. The effect of an increase in ϵrisk on the optimal τn is not as obvious
since the right hand side of equation (1.1) contains endogenous variables. An application
of the implicit function theorem, however, clarifies that as long as ∂ν/∂ϵrisk > 0 and
∂ν/∂τn < 0, it follows that ∂τn/∂ϵrisk > 0, i.e. the optimal labor income tax is increasing
in the level of risk in the economy. Under standard calibrations, the equilibrium ratio of
marginal utilities, ν, is in fact increasing in the level of risk (∂ν/∂ϵrisk > 0) and decreasing
in the labor income tax (∂ν/∂τn < 0).

1.2 Inequality economy

Consider the environment described above only without risk and with initial wealth inequal-
ity. That is, suppose the productivity levels do not vary between agents, i.e. eL = eH = 1,
and that ω can take two values: ωL for a proportion p of the agents and ωH > ωL for the
rest, with ω̄ ≡ pωL + (1− p)ωH .

Definition 2 A tax distorted competitive equilibrium is
(
aL, aH , nL, nH , r, w; τ

n, τ k, T
)

such that

1. For i ∈ {L,H}, (ai, ni) solves

max
ai,ni

u (ωi − ai, n̄) + βu (ci, ni) , s.t. ci = (1− τn)wni +
(
1 +

(
1− τ k

)
r
)
ai + T ;

2. r = fK (K,N), w = fN (K,N), where K = paL + (1− p) aH and N = pnL +

(1− p)nH ;

3. and, τnwN + τ krK = G+ T .

In this economy the concept of optimality is no longer unambiguous. Since agents are
different ex ante, a decision must be made with respect to the social welfare function. In
what follows, by optimal we mean the one that maximizes W ≡ pUL + (1− p)UH , known
as the utilitarian welfare function. The following proposition follows.

Proposition 2 In the inequality economy, if u satisfies Assumption 1 and has CARA or
is GHH, as in equation (3.1), then the optimal tax system is such that τn = 0,

τ k =

(
1+r
r

)
(ν − 1) p(1− p) (ωH − ωL)

(ν − 1) p(1− p) (ωH − ωL) +
ρ
ψ
(pν + (1− p))

> 0, (1.2)
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where ρ ≡ 2+(1−τk)r
2+r

for CARA, ρ ≡ 1+β− 1
σ (1+(1−τk)r)

σ−1
σ

1+r+β
1
σ (1+(1−τk)r)

1
σ

for GHH, and ψ is the level of
absolute risk aversion.14 T balances the budget.

Proof. See Appendix A.2.

The planner chooses a positive capital income tax which distorts savings decisions but
allows for redistribution between agents. The ex-ante wealth inequality is exogenously
given. However, agents with different wealth levels in the first period will save different
amounts and have different asset levels in the second period. This endogenously generated
asset inequality is the one the tax system is able to affect. A positive capital income
tax, rebated via lump-sum transfers, directly reduces the proportion of the agents’ income
that will be dependent on unequal asset income achieving the desired redistribution which
implies a reduction of consumption inequality (by assumption, there is no labor supply
inequality).

One of the key elements of equation (1.2) is the inverse of the coefficient of absolute risk
aversion, 1/ψ, which is proportional to the agents’ intertemporal elasticity of substitution.
This elasticity indicates the responsiveness of savings to changes in τ k. Hence, the higher
this elasticity is the lower is the optimal level of τ k, since providing redistribution becomes
more costly. The τn = 0 result is again associated with Assumption 1.

Assuming that ωL = 1 − ϵineq/p and ωH = 1 − ϵineq/ (1− p), the effect of an increase
in the mean-preserving spread, ϵineq, on the optimal τ k can again be found by applying
the implicit function theorem on equation (1.2). It follows that, if ∂ν/∂ϵineq > 0 and
∂ν/∂τ k < 0, then ∂τ k/∂ϵineq > 0; the optimal capital income tax is increasing in the level
of inequality in the economy. If u satisfies Assumption 1 and has CARA one can show that
this is always the case.

1.3 Relationship with Dávila, Hong, Krusell and Ríos-Rull (2012)

The results established in Dávila et al. (2012) have an interesting relationship to the ones we
obtain in this paper. We use the last result to explain this relationship. Among other things,
Dávila et al. (2012) show that the competitive equilibrium allocation in the SIM model is
constrained inefficient. That is, the incomplete market structure itself induces outcomes
that could be improved upon if consumers merely acted differently, that is if they used the
same set of markets but departed from purely self-interested optimization. The constrained
inefficiency results from a pecuniary externality. The savings and labor supply decisions of
14The level of absolute risk aversion is endogenous in the GHH case.
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the agents affect the wage and interest rates and, therefore, the risk and inequality in the
economy. These effects are not internalized by the agents and inefficiency follows. Note
that the planner’s problem in their environment is significantly different from the Ramsey
problem described here. There the planner affects allocations directly and prices indirectly,
as a result redistribution and insurance can only occur via the manipulation of equilibrium
prices. Whereas here the Ramsey planner affects (after tax) prices directly and allocations
indirectly.

In a setting similar to the inequality economy just described above, for instance, Dávila et
al. (2012) show that there is under accumulation of capital. A higher level of capital would
decrease interest rates and increase wages, reducing inequality. A naive extrapolation of
this logic would suggest that capital income taxes should be negative so as to encourage
savings. This logic, however, does not take into account the more relevant direct effect of
the tax system on after tax prices. Proposition 2 shows that the opposite is true: capital
income taxes should be positive.

1.4 Relationship with infinite horizon problem

The two-period examples are useful to understand some of the key trade-offs faced by the
Ramsey planner, since they allow for the exogenous setting of the levels of (ex-post) risk
and inequality (ex-ante risk). In the infinite horizon version of the SIM model, however,
these concepts are inevitably intertwined. The characterization of the optimal tax system,
therefore, becomes considerably more complex. Labor income taxes affect not only the level
of risk through the mechanism described above, but also the labor income inequality and the
distribution of assets over time. An agent’s asset level at a particular period depends not
only on its initial value, but on the history of shocks this agent has experienced. Therefore,
capital income taxation affects not only the ex-ante risk faced by the agents but also the
ex-post. Nevertheless, these results are useful to understand some features of the optimal
fiscal policy in the infinite horizon model as will become clear in what follows.

2 The Infinite-Horizon Model
Time is discrete and infinite, indexed by t. There is a continuum of agents with standard
preferences E0 [

∑
t β

tu (ct, nt)] where ct and nt denote consumption and labor supplied in
period t and u satisfies the usual conditions. Individual labor productivity, e ∈ E where
E ≡ {e1, ..., eL}, are i.i.d. across agents and follow a Markov process over time governed by
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Γ, a transition matrix.15 Agents can only accumulate a risk-free asset, a. Let A ≡ [a,∞) be
the set of possible values for a and S ≡ E×A. Individual agents are indexed by the a pair
(e, a) ∈ S. Given a sequence of prices {rt, wt}∞t=0, labor income taxes {τnt }∞t=0, (positive)
capital income taxes {τ kt }∞t=0, and lump-sum transfers {Tt}∞t=0, each household, at time t,
chooses ct (a, e), nt (a, e), and at+1 (a, e) to solve

vt(a, e) = maxu(ct(a, e), nt(a, e)) + β
∑

et+1∈E

vt+1(at+1(a, e), et+1)Γe,et+1

subject to

(1 + τ c)ct(a, e) + at+1(a, e) = (1− τnt )wtent(a, e) + (1 + (1− I{a≥0}τ
k
t )rt)a+ Tt

at+1(a, e) ≥ a.

Note that value and policy functions are indexed by time, because policies {τ kt , τnt , Tt}∞t=0

and aggregate prices {rt, wt}∞t=0 are time-varying. The consumption tax, τ c, is a parame-
ter.16 Let {λt} be a sequence of probability measures over the Borel sets S of S with λ0
given. Since the path for taxes is known, there will be a deterministic path for prices and
for {λt}∞t=0. Hence, we do not need to keep track of the distribution as an additional state;
time is a sufficient statistic.

Competitive firms own a constant-returns-to-scale technology f (·) that uses capital, Kt,
and efficient units of labor, Nt, to produce output each period (f (·) denotes output net
of depreciation, δ denotes the depreciation rate). A representative firm exists that solves
the usual static problem. The government needs to finance an exogenous constant stream
of expenditure, G, and lump-sum transfers with taxes on consumption, labor income, and
(positive) capital income. It can also issue debt {Bt+1} and, thus, has the following in-
tertemporal budget constraint

G+ rtBt = Bt+1 −Bt + τ cCt + τnt wtNt + τ kt rtÂt − Tt, (2.1)
15A law of large numbers operates so that the probability distribution over E at any date t is represented
by a vector pt ∈ RL such that given an initial distribution p0, pt = p0Γ

t. In our exercise we make sure
that Γ is such that there exists a unique p∗ = limt→∞ pt. We normalize

∑
i p

∗
i ei = 1.

16It is not without loss of generality that we do not allow the planner to choose τ c. There are two reasons
for this choice. The first is practical, we are already using the limit of the computational power available
to us, and allowing for one more choice variable would increase it substantially. Second, in the US capital
and labor income taxes are chosen by the Federal government while consumption taxes are chosen by
the states, so this Ramsey problem can be understood as the one relevant for a Federal Government. We
add τ c as a parameter for calibration purposes.
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where Ct is aggregate consumption and Ât is the tax base for the capital income tax.

Definition 3 Given K0, B0, {τ k0 , τn0 , T0} an initial distribution λ0 and a policy π ≡
{τ kt , τnt , Tt}∞t=1, a competitive equilibrium is a sequence of value functions {vt}∞t=0, an
allocation X ≡ {ct, nt, at+1, Kt+1, Nt, Bt+1}∞t=0, a price system P ≡ {rt, wt}∞t=0, and a
sequence of distributions {λt}∞t=1, such that for all t:

1. Given P and π, ct(a, e), nt(a, e), and at+1(a, e) solve the household’s problem and
vt(a, e) is the respective value function;

2. Factor prices are set competitively,

rt = fK(Kt, Nt), wt = fN(Kt, Nt);

3. The probability measure λt satisfies

λt+1 =

∫
S

Qt ((a, e),S) dλt, ∀S ∈ S

where Qt is the transition probability measure;

4. The government budget constraint, (2.1), holds and debt is mean-preserving;

5. Markets clear,

Ct +Gt +Kt+1 −Kt = f (Kt, Nt) , Kt +Bt =

∫
A×E

at(a, e)dλt.

2.1 The Ramsey Problem

We now turn to the problem of choosing the optimal tax policy in the economy described
above. We assume that, in period 0, the government announces and commits to a sequence
of future taxes {τ kt , τnt , Tt}∞t=1, taking period 0 taxes as given. We need the following defi-
nitions:

Definition 4 Given K0, B0, λ0, and {τ k0 , τn0 , T0}, for every policy π, equilibrium allo-
cation rules X (π) and equilibrium price rules P (π) are such that π, X (π), P (π)

and corresponding {vt}∞t=0 and {λt}∞t=1 constitute a competitive equilibrium.
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Definition 5 Given K0, B0, λ0, and {τ k0 , τn0 , T0}, and a welfare function W (π), the Ram-
sey problem is to maxπ∈ΠW (π) such that X (π) and P (π) are equilibrium allocation and
price rules, and Π is the set of policies π = {τ kt , τnt , Tt}∞t=1 for which an equilibrium exists.17

In our benchmark experiments we assume that the Ramsey planner maximizes the util-
itarian welfare function: the ex-ante expected lifetime utility of a newborn agent who has
its initial state, (a, e), chosen at random from the initial stationary distribution λ0. The
planner’s objective is, thus, given by

W (π) =

∫
S

E0

∞∑
t=0

βtu (ct (a, e|π) , nt (a, e|π)) dλ0.

We consider alternative welfare functions in Sections 5.1 and 8.1.

2.2 Solution method

We solve the Ramsey problem defined above numerically. Given an initial stationary equi-
librium, for any policy π ∈ Π we can compute the transition to a new stationary equilibrium
consistent with that policy, as long as the taxes become constant at some point, and eval-
uate welfare W (π). We then search for the policy π = {τ kt , τnt , Tt}∞t=1 maximizing welfare
W (π). This is, however, a daunting task since it involves searching in the space of infinite
sequences. In order to make it computationally feasible we approximate the space of infinite
policy sequences Π with a space of sequences, ΠA, that can be identified by a finite number
of nodes.

In Section 7 we show that in complete markets economies optimal capital income taxes
should be front-loaded. Hence, in defining the set ΠA we take this under consideration.
That is, we allow capital income taxes to hit the imposed upper bound of 100 percent for
the first t∗ periods, where a model period is equivalent to one year. Importantly, t∗ is
a choice variable and is allowed to be zero, so the fact that the solution displays capital
income taxes at the upper bound for a positive amount of periods is not an assumption but
a result. Other than this, we assume that the paths for

{
τ kt
}∞
t=t∗+1

and {τnt , Tt}
∞
t=1 follow

splines with nodes set at exogenously selected periods. We started with a small number of
them and sequentially added more until the solution converged. In the main experiment
the planner was allowed to choose 15 nodes: t∗, τ kt∗+1, τ k75, τ k100, τn1 , τn15, τn30, τ k45, τ k60, τ k100,
T1, T15, T30, T45, and T60. The last node for lump-sum, T100, is determined endogenously
in order for government debt to be bounded and is, therefore, not a choice variable. In
17In particular, note that the government debt path associated with a policy in Π must be bounded.
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the intermediate periods the paths follow a cubic spline function and after the final period,
100, they become constant at the last level. The choice of the periods 1, 15, 45, 60, and
100, were placed at the same distance from each other except for the last ones which are
supposed to capture the long run levels. The choice of nodes for

{
τ kt
}100
t=t∗

are a result of
the fact that, for experiments with less nodes, the optimal t∗ was always close to 50. In the
Online Appendix we include details about the calculation of T100 and figures that compare
the optimal fiscal policy computed with 2, 3, 6, 8, 10, 13 and, finally, 15 variables. The
welfare gains associated with each of these solutions are displayed in Table 1—the gains
are computed as permanent percent increases in consumption. We view the fact that the
changes in welfare gains from 13 to 15 nodes is small, around 0.01 percent, and that the
optimal taxes in the two experiments are close to one another as evidence that we have
allowed for enough nodes.

Table 1: Change in welfare at optimum from adding nodes

Nodes 2 → 3 3 → 6 6 → 8 8 → 10 10 → 13 13 → 15

Welfare 0.54 0.27 0.11 0.26 0.03 0.01

Solving the problem described above is a particularly hard computational task. Effec-
tively we are maximizingW (π) such that π ∈ ΠA. We know very little about its properties;
it is a multivariate function with potentially many kinks, irregularities and multiple local
optima. Thus, we need a powerful and thorough procedure to make sure we find the global
optimum. We design a numerical algorithm for global optimization, based on insights from
Guvenen (2011), Kan and Timmer (1987a) and Kan and Timmer (1987b), and apply it to
solve the Ramsey problem. Our algorithm is parallelized for multiple cores and a detailed
description of it is contained in the Online Appendix. Here, we present a heuristic overview.

The algorithm can be divided into two main stages: a global and a local one. In the
global stage we randomly draw a very large number of policies from the approximated
domain ΠR and compute the transition between the exogenously given initial stationary
equilibrium and a final stationary equilibrium that is policy dependent. Then, we compute
welfare W (π) for each of those policies and select the ones that yield the highest levels of
welfare. These selected policies are then clustered, i.e. similar policies in terms of welfare
are placed in the same cluster. Next, in the local stage we run for each cluster a derivative
free optimizer based on an algorithm designed by Powell (2009). The sequence of global and
local searches is repeated until the number of local minima found and the expected number
of local minima in our problem, determined by a Bayesian rule, are sufficiently close. Then
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we pick the global optimum from the set of local optima. The main experiment, with 15

nodes, was conducted with the use of 576 cores at the Minnesota Supercomputing Institute
and took approximately 120 hours.

3 Calibration
We calibrate the initial stationary equilibrium of the model economy to replicate key prop-
erties of the US economy relevant for the shape of the optimal fiscal policy. Table 2 sum-
marizes our parameter choices together with the targets we use to discipline their values
and their model counterparts. We use data from the NIPA tables for the period between
1995 and 200718 and from the 2007 Survey of Consumer Finances (SCF).

Table 2: Benchmark Model Economy: Target Statistics and Parameters

Statistic Target Model Parameter Value

Preferences and Technology
Intertemporal elast. of substitution 0.50 0.50 σ 2.000*
Frisch elasticity 0.72 0.72 κ 0.720*
Average hours worked 0.30 0.30 χ 3.905

Capital to output 2.72 2.72 β 0.948

Capital income share 0.38 0.38 α 0.380*
Investment to output 0.27 0.27 δ 0.100

Borrowing Constraint
% of hhs with wealth < 0 18.6 19.3 a/Y −0.025

Fiscal Policy
Capital income tax (%) 36.0 36.0 τ k 0.360*
Labor income tax (%) 28.0 28.0 τn 0.280*
Consumption tax (%) 5.0 5.0 τ c 0.050*
Transfer to output (%) 8.0 8.0 T/Y 0.080

Debt-to-output (%) 63.0 63.0 G/Y 0.146

Note: Parameter values marked with (*) were set exogenously, all the others were endogenously and jointly
determined.

18We choose this time period to be consistent with the one used to pin down fiscal policy parameters which
we take from Trabandt and Uhlig (2011) and also to prevent the Great Recession to affect our results.
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3.1 Preferences and technology

We assume GHH preferences (see Greenwood et al. (1988)) with period utility given by

u (c, n) =
1

1− σ

(
c− χ

n1+ 1
κ

1 + 1
κ

)1−σ

, (3.1)

where σ is the coefficient of relative risk aversion, κ is the Frisch elasticity of labor supply
and χ is the weight on the disutility of labor. These preferences exhibit no wealth effects
on labor supply, which is consistent with some microeconometric evidence showing these
effects are in fact small. See Holtz-Eakin et al. (1993), Imbens et al. (2001), Chetty et al.
(2012) and Cesarini et al. (2017) for details.19

Further, they imply that aggregate labor supply is independent of the distribution of
wealth, which is convenient for computing out of steady state allocations in our main ex-
periment. We set the intertemporal elasticity of substitution to 0.5—the number frequently
used in the literature (e.g. Dávila et al. (2012) and Conesa et al. (2009)). For the Frisch
elasticity, κ, we rely on estimates from Heathcote et al. (2010) and use 0.72. This value is
intended to capture both the intensive and the extensive margins of labor supply adjust-
ment together with the typical existence of two earners within a household. It is also close
to 0.82, the number reported by Chetty et al. (2011) in their meta-analysis of estimates for
the Frisch elasticity using micro data. The value for χ is chosen20 so that average hours
worked equals 0.3 (the associated average effective labor level, N , is 0.44). To pin down the
discount factor, β, we target a capital to output ratio of 2.72, and the depreciation rate, δ,
is set to match an investment to output ratio of 27 percent.21 The aggregate technology is
given by a Cobb-Douglas production function Y = KαN1−α with capital share equal to α,
which is set to its empirical counterpart of 0.38.

3.2 Borrowing Constraints

We discipline the borrowing constraint a using the percentage of households in debt (nega-
tive net worth). We target 18.6 percent following the findings of Wolff (2011) based on the
2007 SCF.
19Marcet et al. (2007) investigate the role of wealth effects on the differences in allocation between complete
and incomplete markets and conclude that they can be relevant under certain calibrations.

20It is understood that in any general equilibrium model all parameters affect all equilibrium objects. For
the presentation purposes, we associate a parameter with the variable it affects quantitatively most.

21Capital is defined as nonresidential and residential private fixed assets and purchases of consumer
durables. Investment is defined in a consistent way.
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3.3 Fiscal policy

In order to set the tax rates in the initial stationary equilibrium we use the effective average
tax rates computed by Trabandt and Uhlig (2011) from 1995 to 2007. The lump-sum
transfers to output ratio is set to 8 percent and we discipline the government expenditure
by imposing a debt to output ratio of 63 percent also following Trabandt and Uhlig (2011).
The latter is close to the numbers used in the literature (e.g. Aiyagari and McGrattan
(1998), Domeij and Heathcote (2004) or Röhrs and Winter (2017)). The calibrated value
implies a government expenditure to output ratio of 15 percent, the data counterpart for
the relevant period is approximately 18 percent. Further, we also approximate well the
actual income tax schedule as can be seen in Figure 1.
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Figure 1: Income tax schedule
Note: The data was generously supplied by Heathcote et al. (2017) who used PSID and the TAXSIM
program to compute it. The axis units are income relative to the mean.

3.4 Labor income process

The stochastic process for individual labor productivity levels, e, is calibrated to match
statistical properties of the labor income process and the distributions of wealth, earnings
and income. We model it as a sum of a persistent component eP with Markov matrix ΓP

and a transitory component eT with probability vector PT .22 There are 4 persistent and
6 transitory productivity levels. Since we normalize the average productivity to one and
probabilities must also add up to one, we are left with 26 parameters to choose.

It is common to use the discretization procedures introduced by Tauchen (1986) or
Rouwenhorst (1995) when calibrating the Markov process for productivities. These meth-
ods have limited ability to represent higher order moments of the labor income process
22In the notation of the model, e = eT + eP and Γ = ΓP ⊗ diag(PT ).
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Table 3: Benchmark Model Economy: Target Statistics and Parameters

Model Parameters

Persistent Shock Transitory Shock

ΓP =


0.96 0.04 0.00 0.00

0.08 0.91 0.01 0.00

0.01 0.00 0.98 0.01

0.09 0.01 0.01 0.89

 eP =


0.48

0.88

1.80

7.14

 PT =



0.05

0.04

0.12

0.59

0.10

0.11


eT =



−0.23

−0.10

−0.06

0.01

0.18

0.21


Statistics Target Model Target Model Target Model

Moment of Distribution Wealth Earnings Income
Gini index 0.82 0.84 0.64 0.61 0.57 0.55

% in bottom 5% −0.2 −0.0 −0.1 0.5 0.2 0.9

% in 1st quintile −0.2 −0.1 −0.1 3.4 2.8 4.6

% in 2nd quintile 1.1 0.3 4.2 4.1 6.7 5.8

% in 3th quintile 4.5 2.1 11.7 8.3 11.3 9.6

% in 4th quintile 11.2 10.8 20.8 19.7 18.3 22.6

% in 5th quintile 83.4 86.9 63.5 64.5 60.9 57.5

% in top 5% 60.3 58.4 35.3 34.5 36.9 31.2

Statistical Properties of Labor Income Process
Variance of 1-year diff. 0.26 0.27

Skewness of 1-year diff. −1.07 −0.75

Kurtosis of 1-year diff. 14.93 14.58

Variance of 5-year diff. 0.61 0.64

Skewness of 5-year diff. −1.25 −0.82

Kurtosis of 5-year diff. 9.51 10.19

Autocorrelation 0.88 0.88

such as its skewness and kurtosis. We do not impose the restrictions associated with those
methods which allows us to have more targets.

To match the wealth, earnings and income distributions we follow Castañeda et al. (2003)
and target the Gini coefficients, the shares owned by every quintile, plus the bottom and
top 5 percent in the 2007 Survey of Consumer Finances, as reported by Díaz-Giménez et al.
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(2011). Similarly to Domeij and Heathcote (2004) we also target properties of the individual
labor income23 estimated by Guvenen et al. (2015). Specifically, we target the variance,
skewness and kurtosis of labor income growth in 1 and 5 years, and the autocorrelation
of the annual labor income.24 Table 3 summarizes the parameter values and targeted
moments, notice that the model is over identified with 31 targets for the 26 parameters.

3.5 Model performance

Table 4 presents an important dimension along which our model is consistent with the data:
income sources over the quintiles of income. The composition of income,25 especially of the
consumption-poor agents, plays an important role in determining the optimal fiscal policy.
The fraction of uncertain labor income determines the strength of the insurance motive and
the fraction of the unequal asset income affects the redistributive motive. Our calibration
delivers, without targeting, a good approximation of the income composition.

Table 4: Income sources by quintiles of income

Quintile US Data Model
Labor Asset Transfer Labor Asset Transfer

1st 38.4 -1.9 63.5 57.0 0.7 42.3
2nd 66.4 2.5 31.1 60.8 5.9 33.3
3rd 78.6 2.7 18.7 73.9 6.1 20.0
4th 85.4 4.0 10.6 71.0 20.4 8.5
5th 77.5 18.2 4.3 78.4 18.3 3.3
All 77.3 12.2 10.4 74.3 16.1 9.6

Note: Table summarizes the pre-tax total income decomposition. We define the asset income as the sum
of income from capital and business. Data come from the 2007 Survey of the Consumer Finances, based
on a summary by Díaz-Giménez et al. (2011).

23Although in our model there is no difference between the two concepts, in dealing with the data we follow
Díaz-Giménez et al. (2011) and call labor income wages and salaries of all kinds, and earnings the sum
of labor income plus a fraction of business income.

24We compute these moments in closed form directly from the Markov matrix relying on insights from
Civale et al. (2016).

25Dávila et al. (2012) demonstrate that the composition of income, especially of poor agents, is a crucial
determinant of the optimal policy.
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4 Main Results
The optimal paths for the fiscal policy instruments are presented in Figure 2. Capital
income taxes are front-loaded hitting the upper bound for 53 years, and then decrease to
42 percent in the long run. Labor income taxes initially remain close to the initial value
of 28 percent, then increase towards a final value of 40 percent. The ratio of lump-sum
transfers to output is more than doubled from the initial value of 8 percent to 17 percent
initially, eventually settling on about 14 percent. The government accumulates assets in
the initial periods of high capital income taxes reaching a level of debt-to-output of about
−100 percent, which then converges to a final level of 40 percent. Relative to keeping fiscal
instruments at their initial levels, this leads to a welfare gain equivalent to a permanent
13.9 percent increase in consumption. This section is devoted to explaining the economics
behind these results.
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Figure 2: Optimal Fiscal Policy: Benchmark
Note: Dashed lines: initial stationary equilibrium; Solid lines: optimal transition; The black dots are the
choice variables: the spline nodes and t∗, the point at which the capital income tax leaves the upper bound.
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4.1 Aggregates

Looking only at the aggregates it seems hard to justify the optimal policy. This is because
the welfare gains associated with the policy come from the implied redistribution and extra
insurance which require higher taxes and, therefore, are likely to be detrimental to aggregate
movements, a point that we clarify bellow in Section 4.3. The aggregates associated with the
implementation of the optimal policy are shown in Figure 15. At the end of the transition
capital is reduced by 28 percent, and labor by 17 percent.

Since there are no wealth effects on labor supply, the reduction of aggregate labor is easy
to understand it is a result of the higher labor income taxes and the lower level of capital.
The movement in capital has more forces at play. Besides the higher overall capital income
taxes and lower aggregate labor which reduces the marginal product of capital, another
force that acts to reduce the capital level is the reduction of the precautionary savings
due to the fact that the optimal policy implies a less risky after-tax labor income. Note,
however, that even if capital income taxes were set to 100 percent forever, there would still
be a precautionary motive to save. Moreover, the fact that the government accumulates
assets over time, especially during the years with capital income taxes at 100 percent,
crowds in capital which also limits its reduction - an effect we explain in more detail below
in Section 4.7.

The lower levels of capital and labor lead to lower levels of output and, therefore, aggre-
gate consumption, which decrease by 24 and 26 percent respectively, over the transition.
The concomitant reduction in average consumption and labor has ambiguous effects on the
welfare of the average agent. Hence, we also plot in Figure 15f what we call the average
consumption-labor composite, defined below in equation (4.1), which is the more relevant
measure for welfare. On impact the labor-consumption composite increases by 17 percent
since, besides the reduction in labor, consumption levels increase due to the initial reduc-
tion in savings. It then decreases over time, eventually reaching a level that is 20 percent
lower than in the initial steady state.

4.2 Distributional Effects

As discussed above, movements in the aggregates do not provide a full picture of what
results from the implementation of the optimal fiscal policy. It is also important to un-
derstand its effects on inequality and on the risk faced by the agents. Figure 3a plots the
evolution of the Gini index for consumption-labor composite. Note that, on impact the Gini
is significantly reduced and that this reduction is mostly maintained over the transition.
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As will become clear below, this reduction in inequality is behind most of the welfare gains
associated with the optimal policy. Not surprisingly, such a change would be supported by
only by the agents with lower asset positions and productivity levels - see Table 5.

Table 5: Proportion in favor of reform by earnings and wealth quintiles

Quintile 1st 2nd 3rd 4th 5th All

Earnings 88.1 88.1 88.0 62.3 0.0 65.3

Wealth 99.8 99.1 89.6 27.8 9.1 65.3

Figure 3b displays the evolution of the shares of labor, capital and transfer income out
of total income. It is important to notice that the share of labor income is significantly
reduced under the optimal policy and replaced mostly by transfer income. Since all the
risk faced by agents in the SIM model is associated with their labor income, it turns out
that they face less risk after the policy is implemented, which is also welfare improving.
The next sections will quantify more precisely the importance of these effects.
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Figure 3: Inequality measures
Note: (a) Dashed line: initial stationary equilibrium; Solid line: optimal transition; (b): From top to
bottom the areas represent the shares of transfer, (after-tax) asset and labor income; before time 0 the
areas represent the shares in the initial stationary equilibrium.

4.3 Sources of welfare improvement

Here we present a result that is particularly helpful for understanding the properties of the
optimal fiscal policy. First, let v(xt) ≡ u(ct, nt) where xt is the individual consumption-
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labor composite, the term “inside” the utility function in equation (3.1), that is

xt ≡ ct − χ
n
1+ 1

κ
t

1 + 1
κ

, (4.1)

and Xt denote its aggregate level. The utilitarian welfare function can increase for three
reasons. First, it will increase if the utility of the average agent, U ({Xt}) ≡

∑∞
t=0 β

tv(Xt),
increases; we call this the level effect. Reductions in distortive taxes will achieve this goal
by allocating resources more efficiently. This is the only relevant effect in a representative
agent economy (without heterogeneity). Second, since agents are risk averse, it increases
if the riskiness of individual paths {xt}∞t=0 is reduced; we call this the insurance effect. By
redistributing from the (ex-post) lucky to the (ex-post) unlucky, a tax reform reduces the
risk faced by the agents. Finally, it increases if the inequality across the certainty equivalents
of the individual paths {xt}∞t=0, for agents with different initial (asset/productivity) states
is reduced; we call this the redistribution effect. By redistributing from the rich (ex-ante
lucky) to the poor (ex-ante unlucky), the tax reform reduces the inequality between agents.
In what follows we define these components precisely and present propositions to support
their usefulness.

Average welfare gain. Let v (xt) ≡ u (ct, nt) where u is defined in (3.1) and consider a
policy reform. Denote by xRt (a0, e

t) the equilibrium consumption-labor composite path of
an agent with initial assets a0 and history of productivities et if the reform is implemented.
Let xNRt (a0, e

t) be the equilibrium path in case there is no reform. The average welfare
gain, ∆, that results from implementing the reform is defined as the constant (over time
and across agents) percentage increase to xNRt (a0, e

t) that equalizes the utilitarian welfare
to the value associated with the reform, that is,∫

E0

[
U
(
(1 + ∆)

{
xNRt

(
a0, e

t
)})]

dλ0 (a0, e0) =

∫
E0

[
U
({
xRt
(
a0, e

t
)})]

dλ0 (a0, e0) ,
(4.2)

where λ0 is the initial distribution over states (a0, e0) and

U
({
xt
(
a0, e

t
)})

≡
∞∑
t=0

βtv(xt(a0, e
t)) =

∞∑
t=0

βtu
(
ct
(
a0, e

t
)
, nt
(
a0, e

t
))
.

Components of welfare. Let the aggregate level of xt at each t be

Xj
t ≡

∫
xjt
(
a0, e

t
)
dλjt

(
a0, e

t
)
, for j = R,NR.

27



Then, the level effect, ∆L, is given by

U
(
(1 + ∆L)

{
XNR
t

})
= U

({
XR
t

})
. (4.3)

Let {x̄jt (a0, e0)} denote the sequence of individual consumption-labor certainty equivalents,

U
({
x̄jt (a0, e0)

})
= E0

[
U
({
xjt
(
a0, e

t
)})]

, for j = R,NR. (4.4)

Note that the path {x̄jt (a0, e0)} is not fully determined by this condition. We therefore,
impose that for every initial state (a0, e0), the individual certainty equivalent is proportional
to the path of an agent who always has the productivity level e0 and has assets a0 in period
0, that is26

x̄jt (a0, e0) = ηj (a0, e0)x
j
t (a0, e0) , for j = R,NR, (4.5)

where ηj (a0, e0) denotes the degree of proportionality. The usefulness of this condition
will become apparent briefly. Next, let X̄j

t be the aggregate consumption-labor certainty
equivalent,

X̄j
t =

∫
x̄jt (a0, e0) dλ0 (a0, e0) , for j = R,NR. (4.6)

The insurance effect, ∆I , is defined by

1 + ∆I ≡
1− pRrisk
1− pNRrisk

, where U
((
1− pjrisk

) {
Xj
t

})
≡ U

({
X̄j
t

})
, (4.7)

and the redistribution effect, ∆R, by

1+∆R ≡
1− pRineq
1− pNRineq

, where U
((
1− pjineq

) {
X̄j
t

})
≡
∫
U
({
x̄jt (a0, e0)

})
dλ0 (a0, e0) . (4.8)

The terms prisk and pineq are the costs of risk and inequality in the economies with or
without reform. These definitions have the following useful properties.

Proposition 3 If there is no risk in the economy, the cost of risk, prisk, is zero, and if
there is no inequality, the cost of inequality, pineq, is equal to zero.

Proof. See Appendix B.

The definition of the individual certainty equivalents in equation (4.5) is crucial to estab-
26This way of defining individual certainty equivalents is the main difference between our welfare decom-
position procedure and the one used in Floden (2001) and Benabou (2002); it is the key to establishing
Proposition 3.
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lishing this result. When computing this decomposition in a stationary equilibrium it is
common to set them to a constant. When the transition is take into account, however, such
a choice leads to non-zero risk costs even when there is no risk in the economy. Besides
this being an oxymoron, it would mean that the magnitude of the insurance effect would
not be completely due to changes in the amount of risk the agents are exposed to.27

Welfare decomposition. The following proposition establishes that it is possible to
decompose the average welfare gains into the components described above.28

Proposition 4 If preferences are GHH, then

1 + ∆ = (1 + ∆L) (1 + ∆I) (1 + ∆R) .

Proof. See Appendix B.

Note that none of the elements of the decomposition are defined residually, hence this is
indeed a decomposition and not a definition. The results of applying this decomposition
for our main results are in Table 6.

Table 6: Welfare decomposition

∆ ∆L ∆I ∆R

Benchmark 13.9 −4.8 2.4 16.8
Fixed Capital Income Tax 3.2 −2.5 2.1 3.6
Fixed Labor Income Tax 12.7 −1.8 0.4 14.3
Fixed Debt-to-Output 12.0 −7.3 2.5 17.9
Fixed Prices 17.0 −1.3 1.5 16.8

Fixed Instruments. Besides the benchmark economy, we also include in Table 6 the
decomposition for four other economies, in which we keep each fiscal instrument at their
initial level. Other instruments follow their optimal paths found in the main experiment
and we add a constant to the path o lump-sum so that the government budget constraint
is satisfied. Most of the welfare gains, in the benchmark experiment, come from the redis-
tribution channel, the insurance channel contributes 2.4 percentage points, and the level
effect has a negative contribution of −4.8 percent.
27We thank Piero Gottardi for pointing this out.
28The welfare gains described above are in terms of consumption-labor composite units. The decomposition
does not hold exactly in terms of consumption units. To keep our results comparable with others, we
report the average welfare gains in terms of consumption units and rescale the numbers for ∆L, ∆I , and
∆R accordingly.
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It is clear from the results the path of capital income taxes is behind most of the redistri-
butional welfare gains while labor income taxes are behind most of the insurance gains. On
the other hand keeping these taxes at their initial lower levels leads to less welfare losses
through the level effect. These results are fully in line with Propositions 1 and 2. Keeping
debt-to-output at its initial level, exacerbates the damage to the level effect caused by the
long period high capital income taxes at the upper bound, since the government no longer
has an effective instrument to crowd-in private capital through general equilibrium prices.
On the other hand, the gains via redistribution increase since lump-sum transfers are forced
to rise more during this initial period. Finally, to understand the contribution of general
equilibrium price movements, we consider an out-of-equilibrium experiment in which prices
are kept at their initial values while all fiscal instruments move as in the benchmark. Since
aggregate output decreases in the benchmark results, with fixed prices agents will have
relatively more income which explains the smaller reduction in the level effect. In the next
sections we elaborate on the reasons behind these results.

4.4 Variations around the optimal taxes

In this section we vary the tax levels around the optimal values and calculate the welfare
decomposition at each step in order to better understand the main determinants of the
optimal values. For every experiment, the entire path of lump-sum taxes was shifted up or
down in order to balance the government’s intertemporal budget constraint.

Number of years of capital income taxes in the upper bound. The optimal path of
capital income taxes features 53 years of taxes at the imposed upper bound of 100 percent,
which we denote by t∗ = 53. Figure 4 shows what happens to the components of welfare if
capital income taxes are kept at the upper bound for more or less periods. The effect on
insurance is of second order, and, in line with the result in Proposition 2, the relevant trade-
off is between the extra redistribution associated with a higher t∗ versus the negative level
effect due to the extra amount of distortion. These two effects, however, almost exactly
offset each other, leading to a relatively flat average welfare function which is consistent
with the findings in Section 4.5.

Long-run capital income taxes. Here we vary all the nodes for capital income taxes
after t∗ by the same amount. The level of capital income taxes at these nodes is allowed to
increase or decrease up to 5 percent relative to the optimal one. The results are displayed
in Figure 5 and the welfare decomposition numbers are both comparable to the ones for
changes in t∗. That is, again the relevant trade-off is between the redistribution and the
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Figure 4: Variation on t∗

Note (a): Dashed line: initial stationary equilibrium; Solid line: optimal transition and variation upon it;
(b): the x-axis represents the movement in t∗ for the optimum minus 2 to plus 2, and the lines plot the
difference between each welfare measure and its value at the optimal.

level effects. This is somewhat surprising since these tax changes only affect capital income
taxes after 53 years of transition and one might expect that the dependence on agents’
initial condition would have mostly dissipated by then. The fact that this is not the case
speaks to how persistent this dependence actually is.29 For the logic in Chamley (2001) and
Acikgoz et al. (2018)—that far enough in the long-run the dependence on agents’ initial
conditions fully dissipates so that only the insurance and level effects would be relevant—
to become relevant one would need to consider changes in capital income taxes further in
the future than we consider here. Movements far enough in the future would indeed only
affect the insurance effect and have no effect on ex-ante redistribution. On a related note,
in Section 5.1 we show that the insurance effect by itself can rationalize levels of capital
income taxes very similar to the long-run levels seen here. Finally, take notice of the range
of values for the welfare decomposition in Figure 5. The low order of magnitude of these
numbers is indicative of the relevance for welfare of the long-run capital income taxes in
this model but also, the fact that these figures display monotonic and well behaved curves
testifies to the precision of our solution.

Labor income taxes. Here we change the average level of labor income taxes up and down
by 5 percent, leading to the results in Figure 6. First note the by comparing the welfare
numbers with the ones in Figures 4 and 5, the effect of changes in labor income taxes are
an order of magnitude higher than the changes to capital income taxes considered above.
Besides this quantitative difference, the main qualitative difference is that the insurance
effect plays a comparable role to the redistribution effect in determining the optimal level of
29Even focusing only on the productivity states, we have that maxi,j |(Γ100)i,j − πj | ≈ 0.1, that is, the
probability of being in state j in period 100 and having started in state i is still significantly different
from the probability of being in state j in according to the stationary distribution, denoted by π.
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Figure 5: Variation on long-run capital income taxes
Note (a): Dashed line: initial stationary equilibrium; Solid line: optimal transition and variation upon it;
(b): the x-axis represents the movement in all nodes of capital income taxes (after t∗) from the optimum
minus 5 to plus 5 percent, and the lines plot the difference between each welfare measure and its value at
the optimal.

labor income taxes. Hence, though labor income taxes do have important effects on ex-ante
risk, the mechanism highlighted in Proposition 1 plays an important role here. That is,
a higher labor income tax which is rebated via lump-sum (exactly the experiment here),
effectively reduces the labor income risk that agents are exposed to.
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Figure 6: Variation on labor income taxes
Note (a): Dashed line: initial stationary equilibrium; Solid line: optimal transition and variation upon it;
(b): the x-axis represents the movement in t∗ for the optimum minus 5 to plus 5 percent, and the lines
plot the difference between each welfare measure and its value at the optimal.

4.5 Flatness of Welfare Function

Our numerical procedure for solving the Ramsey problem allows us to probe some aspects
of the solution that are hard to investigate analytically. In the process of optimizing, the
solver tries several different paths for the fiscal instrument in its search for the optimal one.
We save all these paths and in Figure 7 present the ones that lead to the highest welfare.
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All paths plotted in this figure are associated with a welfare gain higher than 13.85 percent,
less than 0.01 percent away from the optimal path - the darkness of a path indicating higher
welfare.

First note that the short-run dynamics is much more important, with no path deviating
substantially from the optimal in the first 40 years. Though this is obviously a result of the
fact that the planner discounts the future (at the same rate as agents), it does undermine
to some extent discussions about the precise values of the long-run optimal taxes in this
model; it does not have a significant effect on welfare. Further, note that the long-run levels
of capital income taxes and debt-to-output are the ones that display the most amount of
variation. Since the optimal taxes resolve trade-offs between redistribution, insurance and
the amount of distortions to agents decisions, it is not surprising that the welfare function
would be relatively flat around the optimum. An increase in capital income taxes, for
instance, would improve welfare by providing more redistribution and insurance but reduce
it since it distorts the agents’ saving decision. These effects exactly offset each other at the
optimum, so “small enough” movements in the fiscal instruments do not matter much for
welfare. Figure 7 illustrates how small is small enough.

4.6 Long-Run Optimality Conditions

Aiyagari (1995) analyses the optimal long-run capital income taxes in an environment
similar to the one we are working with.30 He argues that, since there is no aggregate
risk, the Ramsey planner’s decision to move resources across time is risk-free and the
associated Euler equation, in the long run, implies the modified golden rule (i.e. β(1 +

fK(K,N)) = 1). On the other hand, agents face idiosyncratic shocks and the possibility
of being borrowing-constrained in some future periods which leads to extra savings due to
precautionary reasons. In order to implement the optimal level of capital in the long run, it
follows that the planner must set positive capital income taxes. This logic also implies that
the modified golden rule should hold in the long run; our numerical results imply exactly
that. Figure 8 displays β(1 + fK(K,N)) for our benchmark results (solid line) and for an
once-and-for-all policy change experiment, discussed in more detail in Section 6.2 (dashed
line). It becomes clear that the variations of taxes over time are crucial to approximate
the long-run properties of the optimal tax system. Moreover, we view this as corroborating
evidence for the accuracy of our numerical long-run results.
30The home production assumption in Aiyagari (1995) is equivalent to our assumption that preferences
are GHH. The differences are that in his environment the planner does not have lump-sum taxes as an
instrument, but chooses the level of government expenditure every period (which enters separately in the
agents’ utility functions).
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Figure 7: Flatness of Welfare Function
Note: Around the optimal taxes, we plot all (1563) paths that generate welfare gains within 0.01 percent
of the optimal path; the darkness of a path indicates higher welfare.
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Figure 8: β(1 + fK(K,N))

Note: Solid line: benchmark experiment; Dashed line: optimal transition with constant policy.

Recently Acikgoz et al. (2018) have made advancements towards obtaining a better char-
acterization of the long-run optimal tax system in environments very similar to ours. They
argue that the long-run optimal tax system is independent of initial conditions and of the
transition towards it, and show that three long-run optimality conditions must be satisfied—
the modified golden rule and two additional ones. They propose an algorithm that allows
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for the computation of the optimal long-run tax system. We have applied this algorithm
to our economy and have found consistent long-run results.31 The results in Acikgoz et al.
(2018) are obtained under the assumption that a Ramsey steady state exists, that is, the
optimal Ramsey policy is such that the policy itself and all equilibrium variables converge
to a steady state. Chen et al. (2018) show, in a similar environment, that a Ramsey steady
state should not exist.

One possible explanation for these seemingly contradicting results is that, in Chen et
al. (2018), lump-sum transfers are not an instrument to the Ramsey planner. Also, both
Acikgoz et al. (2018) and this paper assume, as a no-Ponzi condition, that government debt
must be bounded. Chen et al. (2018) do not impose such a constraint, in which case it could
be that the planner chooses a path of debt that grows without bounds—a weaker no-Ponzi
condition, on the growth rate of debt, can still be satisfied. Either way, in this paper, we
restrict government debt to be bounded and our solution method only approximates the
solution to the Ramsey problem if a Ramsey steady state exists. In that case, the long-run
optimality conditions in Acikgoz et al. (2018) should be satisfied and it is reassuring that
they are. Our solution method, however, does not make use of these conditions in any way;
they are verified ex post. Our results, moreover, indicate that these long-run properties
have very small implications for welfare since they are only relevant very far in the future
and that a focus on the short-run dynamics is more relevant.

4.7 The role of government debt

In the absence of borrowing constraints, an increase in government debt, financed by an
appropriate change in the timing of lump-sum transfers, is innocuous. In response, agents
simply adjust their savings one-to-one and the Ricardian equivalence holds.32 In the SIM
model, however, agents face a borrowing constraint (which is binding for some of them).
The Ricardian equivalence breaks down and in response to an increase in government debt,
aggregate savings increase by less than one-to-one. Since the asset market must clear (i.e.
At = Kt + Bt), it follows that capital must decrease as a result. Hence, increases in
government debt crowd out capital while decreases crowd in capital.33

31See the Online Appendix for details on how the conditions can be adapted to our environment exactly
and for the results we obtain using them.

32Since we are referring to the effect of changes in the timming of lump-sum transfers financed by debt,
the violation of Ricardian equivalence associated with proportional taxation, as in Barsky et al. (1986),
is not an issue.

33See Aiyagari and McGrattan (1998) and Röhrs and Winter (2017) for an extensive discussion of this
issue.
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In the benchmark experiment this mechanism is mostly used by the Ramsey planner to
smooth out the capital path over time. The reduction in debt in the initial periods crowds
in capital, which counterbalances the effect of the high capital income taxes. However,
movements in government debt can also have important general equilibrium price effects.
A lower level of government debt, for instance, leads to a higher capital level, which re-
duces interest rates and increases wages. Hence, besides the potential positive level effect
associated with the higher levels of capital, such a policy also affects the insurance and
redistribution effects. It effectively reduces the proportion of the agents’ income associated
with the unequal asset income and increases the proportion associated with uncertain labor
income. The result is a positive redistribution effect and a negative insurance effect. These
effects are going to play an important role in what follows.

5 The role of redistribution
In this section we consider two experiments that aim to clarify exactly what features of the
benchmark results are driven solely by the redistributive motive of the planner. Besides
providing additional insights about those results we find these experiments intrinsically
interesting as well.

5.1 Maximizing efficiency

The redistributive motive of the planner plays a central role in our benchmark results.
This preference for reducing inequality is associated with the particular welfare weights
of the utilitarian welfare function. Here, we use the welfare decomposition, explained
in Section 4.3, and consider the problem of a Ramsey planner that maximizes the level
and insurance effects of the welfare decomposition, (1 + ∆L) (1 + ∆I). In the equality
versus efficiency trade-off, such a planner places no weight on equality, focusing only on
the reduction of distortions and ex-post risk.34 Figure 9 presents the results in comparison
with the benchmark results. Relative to the initial stationary equilibrium, the welfare
gains associated with the policy are equivalent to a permanent 3.4 percent increase in
consumption, 1.2 percent coming from the reduction in distortions and 2.2 percent from
the extra insurance.

Labor and capital income taxes. Relative to the benchmark experiment, labor income
taxes are about 10 percent lower throughout the transition. As indicated in Section 4.4,
higher labor income taxes are beneficial both for insurance and redistributive motives, so
34In Section 8.1 we consider different levels of inequality aversion.
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it makes sense that removing one of these motives from consideration leads to a lower
labor income tax. Long-run capital income taxes are remarkably similar to the benchmark
one. In the short run, however, capital income taxes are not kept at the upper bound for
any periods. In the benchmark results, capital income taxes are front loaded because the
utilitarian planner wants to provide redistribution and, since the dependence of agent’s
individual states on their initial values dissipates over time, the earlier redistribution takes
place the better. Since lump-sum transfers in the benchmark results could be reduced in
every period, the usual explanation for the front loading of capital income taxes—that
it mimics lump-sum taxes as it distorts less the agents’ decisions the earlier the taxes
are imposed—does not hold. However, just like in a representative agent economy without
lump-sum, what the planner really would like to do is to confiscate the initial asset holdings
of the agents, though here the goal is to redistribute them.35

Lump-sum transfers and debt. Since average (over-time) taxes on capital and labor
income are lower than in the benchmark, lump-sum transfers must, on average, also be
lower. To understand the path of lump-sum over time it is relevant to notice that, absent
borrowing constraints, the agents would be indifferent about its timing. Since the agents
face borrowing constraints, it is, therefore, optimal to front load lump-sum transfers as
much as possible. This, however, has the negative side effect of increasing government
debt, which crowds out capital. Incidentally, the reason why lump-sum transfers are not
front loaded in the benchmark experiment is because this crowding out in combination
with the capital income taxes at 100 percent would lead to a fast and substantial reduction
in the capital level. Here, debt-to-output increases steadily towards a final level of 322
percent, but capital levels are still higher than in the benchmark experiment throughout
the transition as a result of the lower overall capital and labor income taxes.36 The general
equilibrium price effects associated with the crowing out of capital—the reduction in wages
and increase in interest rates—is also responsible for the insurance gains that follow from
implementing this policy.

Share of constrained agents. In the benchmark result, the share of constrained agents
increases as a side effect of redistribution via capital income taxation, since it effectively
compresses asset positions towards the constraint. Having a larger share of agents close
to the borrowing constraint is also beneficial in the sense that it gives the planner more
35The experiment of considering a planner that ignores redistributive concerns is, therefore, akin to the
experiment in Chari et al. (2018) where they restrict policies from reducing the value of initial wealth in
utility terms which effectively removes the planner’s motive to expropriate initial asset holdings.

36The Online Appendix contains the figures for the aggregates of this experiment and the next where we
allow for an initial capital levy.
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power to affect capital via changes in debt; the Ricardian equivalence holds to a lower
degree—this effect is highlighted by Bhandari et al. (2017). On the other hand, being close
to the constraint is detrimental to the insurance effect since agents are less able to absorb
negative shocks. Since the planner here cares relatively more about insurance, it actually
brings to zero the share of agents that are borrowing-constrained by front loading lump-sum
transfers; in the benchmark results, 9 percent of agents are borrowing-constrained in the
long run.
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Figure 9: Optimal Fiscal Policy: Maximizing Efficiency
Note: Thin dashed line: initial stationary equilibrium; Solid line: path that maximizes efficiency optimal
transition; Thick dashed line: path that maximizes the utilitarian welfare function (Benchmark Results).

5.2 Initial capital levy

Since the utilitarian planner wants to front load capital income taxes, we conduct another
experiment in which we allow the planner to also change capital income taxes in period 0.
We find that the planner then chooses to expropriate 99 percent of the initial asset holding.
Surprisingly, however, this does not lead to lower capital income taxes in the future periods,
on the contrary, capital income taxes are kept in the upper bound of 100 percent for longer
(71 years) and reach a higher long-run level than in the benchmark experiment.

With the capital levy, high productivity agents, who have an incentive to accumulate
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a precautionary buffer of savings, have virtually all their assets expropriated in period
0. These agents immediately begin to rebuild the asset positions and these efforts are not
significantly diminished by the high capital income taxes. That is, the savings decision of the
agents who save the most in this economy becomes even less elastic. Moreover, on impact
the government obtains a lot of revenue so their asset position goes immediately from a
debt-to-output level of 63 percent to−279 percent. As a result, capital is crowded in and the
downward distortions to capital accumulation associated with capital income taxes are less
relevant. On the other hand, capital income taxes are still beneficial to provide insurance
and further redistribution going forward. Importantly, even though capital income taxes
are overall significantly higher relative to the benchmark, the equilibrium capital stock is
still higher throughout the transition. The results are shown in Figure 10. The welfare gains
are equivalent to a permanent 32.4 percent increase in consumption, −2.8 percent coming
from the level effect, 1.9 percent from the insurance and 33.6 percent from redistribution.
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Figure 10: Optimal Fiscal Policy: Levy on Initial Capital Income
Note: Thin dashed line: initial stationary equilibrium; Solid line: path that maximizes the utilitarian
welfare function allowing for capital income taxes to move in period 0 (though the tax level at t = 0 is not
plotted since it is equal to 2, 570 percent) ; Thick dashed line: benchmark results.
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6 Transitory effects
In this section we quantify the importance of transitory effects. We first compute the
optimal fiscal policy ignoring transitory welfare effects. A comparison with our benchmark
results allows us to measure the importance of accounting for these effects. If the difference
was small this would be a validation of experiments of this kind performed in the literature.
It turns out, however, that the results are remarkably different. A better option is to
solve for the optimal policy with constant instruments accounting for transitory welfare
effects. The welfare loss associated with holding the instruments constant, however, is still
significant. The results are summarized in Table 7.

Table 7: Final Stationary Equilibrium: transitory effects

τ k τn T/Y B/Y K/Y ∆ ∆L ∆I ∆R

Initial equilibrium 36.0 28.0 8.0 63.0 2.71 − − − −

Stat. equil. − 43.4 16.1 −375.2 4.20 41.3 6.7 0.1 32.3

Stat. equil. no debt 32.6 27.7 7.6 63.0 2.76 0.1 0.9 −0.1 −0.7

Constant policy 96.1 34.9 20.6 −95.5 2.02 12.7 −4.5 1.8 15.9

Benchmark 42.0 40.9 13.9 40.0 2.48 13.9 −4.8 2.4 16.8

Note: All values, except for K/Y , are in percentage points.

6.1 Maximizing steady state welfare

Here the the planner chooses stationary levels of all four fiscal policy instruments to max-
imize welfare in the final steady state. In particular, the planner can choose any level of
government debt without incurring in the transitional costs associated with it. It chooses a
debt-to-output ratio of −375.2 percent. At this level the amount of capital that is crowded
in is close to the golden rule level, that is, such that interest rates (net of depreciation)
equal to zero. Thus, taxing capital income in this scenario has no relevant effect and we
actually find multiple solutions with different levels of capital income taxes which is why
we do not display that number in Table 7. The average welfare gains associated with this
policy are 41.3 percent, that is, agents would be willing to pay this percentage of their
consumption in order to be born in the stationary equilibrium of an economy that has this
policy instead of the initial stationary equilibrium. However, these welfare gains ignore
transitory effects, it is as if the economy jumped immediately to a new steady state with
a much higher capital stock and in which the government has a large amount of assets
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without incurring in the costs associated with accumulating it.

This result contrasts with the one in Aiyagari and McGrattan (1998). They run a similar
experiment with some important differences: in their model the only tax available to the
planner is a total income tax, and their calibration strategy for the labor income process
focuses on matching the auto-correlation and variance of labor income without targeting
distributional moments. They find that the government, even though it could costlessly
choose any level of debt-to-output, chooses a level very close to the actual level in the
US data at the time, around 67 percent. In fact, they show that the welfare function
is relativelly flat with respect to the choice of debt-to-output. Röhrs and Winter (2017)
replicate their experiment with a calibration that targets wealth inequality statistics and
find the opposite result, i.e. the government chooses to hold high levels of assets (they also
allow for different tax instruments which they show also affects the result). The mechanism
described in Section 4.7 is important to understanding these results: a higher debt level
crowds out capital, which increases interest rates and reduces wages. Therefore, a higher
debt level generates (i) a positive insurance effect, and (ii) negative level and redistribution
effects. In Aiyagari and McGrattan (1998) the former dominates the latter, yet here and in
Röhrs and Winter (2017) the opposite occurs. In particular, matching the actual level of
wealth inequality makes redistribution a higher priority for the utilitarian planner. Figure
11 presents the welfare gains and decomposition for an experiment in which we allow only
for total income taxes that balance the budged, as in Aiyagari and McGrattan (1998), and
vary the level of debt-to-output.
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-50
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Figure 11: Welfare decomposition versus debt-to-gdp in steady state
Note: The variable in the x-axis is the debt-to-gdp in steady state; the thin dashed vertical line marks
the level of debt-to-gdp in the initial stationary equilibrium, 63%, versus which the welfare changes are
calculated.

An alternative experiment, which is closer to the one studied by Conesa et al. (2009),
is to restrict the level of debt-to-output to remain at its initial level and choose only the
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other fiscal instruments. When this is the case, the planner chooses fiscal instruments at
levels very close to the initial ones. As a result, the policy leads to small welfare gains
of only 0.1 percent relative to the initial steady state. Interestingly, this result for the
fiscal instruments is analogous to the finding in Aiyagari and McGrattan (1998) about the
level of debt-to-output. However, implementing the steady-state-maximizing policy and
accounting for its transitory effects would actually lead to a welfare loss equivalent to a 0.7

percent permanent reduction in consumption.

6.2 Transition with constant policy
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Figure 12: Optimal Fiscal Policy: Constant Policy
Notes: Thin dashed line: initial stationary equilibrium; Solid line: path that maximizes efficiency optimal
transition; Thick dashed line: Benchmark Results.

Here we consider the problem of finding the constant optimal fiscal policy that maximizes
the same welfare function we use in our benchmark experiment, in which transitory effects
are accounted for. Since the government cannot change taxes over time and the welfare
function puts higher weight on the short run, the optimal taxes under this restriction are
close to the ones in the short run of the optimal dynamic taxes in the benchmark experiment
(see Figure 12).37 The long-run levels of the fiscal instruments, however, are significantly
37Figures with the corresponding aggregates are presented in the Online Appendix.
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different. Long-run capital income taxes and debt-to-output are especially different, since
they vary more over the transition. Hence, if one is interested in the long-run properties of
the fiscal instruments, it is important to allow them to vary over time. In particular, as we
noticed above in Section 4.6, whereas the modified golden rule (approximately) holds for
the benchmark policy, it does not hold under this restriction (see Figure 8). Finally, note
the restriction to constant policies leads an average welfare loss of 1.2 percent relative to
the optimal dynamic policy.

7 Complete Market Economies
To our knowledge, this paper is the first to solve the Ramsey problem in the SIM environ-
ment. To highlight the role of the market incompleteness for the optimal policy and relate
our findings to other results in the literature, we provide a build up to our benchmark result.
First, we start from the representative agent economy (Economy 1) and introduce hetero-
geneity only in initial assets (Economy 2), heterogeneity only in individual productivity
levels (constant and certain) (Economy 3), and heterogeneity both in initial assets and in
individual productivity levels (Economy 4). Introducing idiosyncratic productivity shocks
and borrowing constraints brings us back to the SIM model. At each step, we analyze the
optimal fiscal policy identifying the effect of each feature.

In what follows we examine the optimal fiscal policy in Economies 1-4. Their formal
environments can be quickly described by starting from the SIM environment delineated
above. Economy 4 is the SIM economy with transition matrix, Γ, set to the identity matrix.
and borrowing constraints replaced by no-Ponzi conditions. Then, we obtain Economy 3 by
setting initial asset levels to its average, Economy 2 by setting the productivity levels to its
average, e = 1, and Economy 1 by equalizing both initial assets and levels of productivity.38

Figure 13 contains the numerical results obtained using the same method used for the
benchmark results together with some of the analytical equations derived bellow.

7.1 Economy 1: representative agent

To avoid a trivial solution, the usual Ramsey problem in the representative agent economy
does not consider lump-sum transfers to be an available instrument. Since in this paper we
do, the solution is, in fact, very simple. It is optimal to obtain all revenue via lump-sum
taxes and set capital and labor income taxes so as not to distort any of the agent’s decisions.
38In order to keep the amount of labor income inequality comparable with the benchmark calibration we
rescale the productivity levels so as to keep the variance of the present value of labor income the same.
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This amounts to setting τ kt = 0 and τnt = −τ c for all t ≥ 1. Since consumption taxes
are exogenously set to a constant level, zero capital income taxes leave savings decisions
undistorted and labor income taxes set equal to minus the consumption tax ensures labor
supply decisions are not distorted as well. In this setup the Ricardian equivalence holds, so
that the optimal paths for lump-sum taxes and debt are indeterminate: there is no lesson to
be learned from this model about the timing of lump-sum taxes or the path of government
debt. This will also be the case in Economies 2, 3 and 4 and is why we do not discuss or
plot them.

7.2 Economy 2: heterogeneity in initial assets

Introducing heterogeneity in the initial level of assets we can diagnose the effect of this
particular feature on the Ramsey policies by comparing it to the representative agent ones.
We extend the procedure introduced by Werning (2007)39 to characterize the optimal poli-
cies for this and the next two economies. For the economy with heterogeneity in asset we
obtain the following proposition.

Proposition 5 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is
given by τ kt = 1 for 1 ≤ t < t∗ and τ kt = 0 for all t > t∗; and τnt = −τ c for all t ≥ 1.

Proof. See Appendix C.1.

The results in this and the next two propositions are valid for any set of welfare weights.40

Hence, we effectively characterize the set of Pareto efficient policies. In this Proposition,
in particular, a change in the welfare weights would only change t∗, leaving unchanged the
long run optimal levels of capital and labor income taxes. In a similar setting, Greulich,
Laczó and Marcet (2016) obtain analogous results. In Section 8.1 we show that the long-run
taxes in the benchmark results are also robust to some changes in the welfare weights.

Once again, there is no reason to distort labor decisions since labor income is certain
and the same for all agents. However, the path of capital income taxes differs from the
representative agent ones. Proposition 2 provides a rationale for taxing capital in this case;
since agents have different initial asset levels, capital income taxes can be used to provide
redistribution. This fact together with the fact that capital income taxes are zero in the
39Werning (2007) solves for separable and balance growth path utility functions. Besides solving for GHH
preferences we also impose the upper bound on capital income taxes and remove the possibility of time
zero taxation to keep the results comparable with the benchmark ones.

40The associated numerical results do assume a utilitarian welfare function.
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long run determine the optimal path for capital income taxes.41 Capital income taxes are
positive and front-loaded, hitting the upper bound in the initial periods and subsequently
being set to zero. The extra revenue obtained via capital taxation is redistributed via
lump-sum transfers (or a reduction in lump-sum taxes relative to the representative agent
level). It is important to reemphasize that since lump-sum transfers are an unrestricted
instrument, there is no reason to tax capital in the initial periods other than to achieve
redistribution.

In order to have a sense of the magnitude of t∗ and the increase in lump-sum transfers,
we apply the same procedure to the one we used to solve for the optimal tax system in
the benchmark economy. All we need to do is choose the initial distribution of assets.
The stationary distribution of assets in this economy is indeterminate,42 hence, we can
choose any one we want. To keep the results comparable we choose the initial stationary
distribution from the benchmark experiment.43

7.3 Economy 3: heterogeneity in productivity levels

It turns out that the Ramsey policies for this economy are a bit more complex. Let Φ, Ψ,
and Ωn be constants, defined in Appendix C, and define

Θt ≡
Ct

Ωnχ κ
1+κ

N
1+κ
κ

t

− 1.

Proposition 6 Assuming capital income taxes are bounded only by the positivity of gross
interest rates, the optimal labor income tax, τnt , can be written as a function of Θt given
by

τnt (Θt) =
(1 + τ c)ΨΘt

ΦΘt +Ψ(σ +Θt)
− τ c, for t ≥ 1, (7.1)

with sensitivity

Θt
dτnt (Θt)

dΘt

=
σ (τnt (Θt) + τ c)2

(1 + τ c)Θt

. (7.2)

41Straub and Werning (2014) show that optimal long-run capital income taxes can be positive in environ-
ments similar to this one. The reason why their logic does not apply here is the fact that the planner
has lump-sum taxes as an available instrument which removes the need to obtain revenue via distortive
instruments. In the Online Appendix we include a more detailed discussion of this issue.

42For the preferences chosen above, consumption is linear in the individual asset level, and labor supply
is independent of it. It follows that the equilibrium levels of aggregates are independent of the as-
set distribution and equal to the representative agent ones (see Chatterjee (1994)). In a steady state,
β
(
1 +

(
1− τk

)
r
)
= 1 and, therefore, every agent will keep its asset level constant.

43In fact, a rescaling of it, since the steady state aggregate level of assets is different when there is no
idiosyncratic risk and, therefore, no precautionary motive for savings.
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Figure 13: Optimal Taxes: Complete Market Economies
Notes: Thin dashed line: initial taxes; Solid line: optimal taxes calculated using the same procedure used in
the Benchmark experiment; Thick dashed line: optimal taxes calculated by using the proposition equations.
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It is optimal to set the capital income tax rate according to

1 + (1− τ kt+1)rt+1

1 + rt+1

=
τnt + τ c

τnt+1 + τ c
1− τnt+1

1− τnt
, for t ≥ 1. (7.3)

Proof. See Appendix C.2.

Since labor income is unequal, there is a redistributive reason to tax it. Optimal labor
income taxes are not constant over time since they depend on Θt. If they were constant,
however, equation (7.3) would imply τ kt = 0 for all t ≥ 2. Thus, capital income taxes will
fluctuate around zero to the extent that labor income taxes vary over time. We disregard the
upper bound on capital income taxes, τ kt+1 ≤ 1, because it would complicate the result even
further and in a non-interesting way. It could be that the bound is violated if the variation
of Θt between t and t+1 is large enough. However, as discussed below, quantitatively this
is unlikely.

To obtain a numerical solution we set the productivity levels to the ones in the benchmark
economy and apply the same procedure. To have a sense of the magnitude of the sensitivity
of τnt to Θt we plug the initial stationary equilibrium numbers (τn = 0.28, τ c = 0.05, σ = 2,
and Θ ≈ 2) into equation (7.2). This implies a sensitivity of 0.1, i.e. a 1 percent increase
in Θt changes the tax rate by 0.1 of a percentage point, from 0.28 to 0.2797.44 This fact,
together with the relative stability of Θt over time, implies that the optimal labor income
taxes are virtually constant and capital income taxes virtually zero.

In any case, the fact that capital is taxed at all seems to be inconsistent with the logic put
forward so far. It is not. When labor income taxes vary over time, they distort the savings
decision, and capital income taxes are then set to “undo” this distortion. The analogous
is not the case in Economy 2 because of the absence of income effects on labor supply.
Distortions of the savings decision do not affect the labor supply.

For this economy and the next, Figure 13 presents the optimal taxes calculated two ways:
using the same procedure as in the benchmark experiment, and using the equations from
the propositions. We view the fact that the two are very similar as a validation of the
procedure used to obtain the benchmark results.
44We can also calculate the path of Θt, which we displayed in a figure in the Online Appendix.
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7.4 Economy 4: heterogeneity in initial assets and productivity
levels

The result for this economy is a combination of the last two economies.

Proposition 7 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is
given by τ kt = 1 for 1 ≤ t < t∗, τ kt follows equation (7.3) for t > t∗; τnt evolves according to
equation (7.3) for 1 ≤ t < t∗; and τnt is determined by equation (7.1) for all t ≥ t∗.

Proof. See Appendix C.3.

Optimal capital income taxes are very similar to those of Economy 2, and for the same
reasons. Labor income taxes are determined by the same equation as in Economy 3 for
t ≥ t∗. In initial period, 1 ≤ t < t∗, while capital income taxes are at the upper bound,
Rt = 1 < R∗

t and, therefore, equation (7.3) implies that labor income taxes should be
increasing. Lump-sum transfers are higher than in Economies 2 and 3 since they are used
to redistribute the capital and labor income tax revenue.

Importantly, the optimal labor income taxes are quantitatively similar to the benchmark
results and its pattern over time, and displays a similar qualitative feature, i.e. while
capital income taxes are at the upper bound, labor income taxes are increasing. This
pattern follows immediately from equation (7.3) by setting τ kt+1 = 1. The high capital
income tax level distorts savings downwards, so having labor income taxes increase over
time “undoes” this distortion to some extent as it front-loads (after-tax) labor income which
increases savings. The only important qualitative difference between these results and the
benchmark ones are that here, capital income taxes are set to zero in the long run.

8 Robustness
Figure 14 shows that the solution with 4 nodes (t∗,τ kt∗+1,τn1 , and T1) produces a reasonable
approximation for the benchmark solution, at least with respect to its basic features, leading
to welfare gains of 13.2 percent relative to 13.9 percent in the benchmark results. In this
section we use this approximation to explore to evaluate the robustness of the results with
respect to changes in the planner’s degree of inequality aversion, the labor-supply and
intertemporal elasticities, and the introduction of preference shocks such that labor supply
is independent of the productivity level.
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Figure 14: Optimal Fiscal Policy with 4 nodes
Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with 17 nodes
(benchmark); Solid line: optimal transition with 4 nodes.

8.1 Controlling the degree of inequality aversion

The utilitarian welfare function, which we consider in our benchmark results, places equal
Pareto weights on every agent. This implies a particular social preference with respect to
the equality-versus-efficiency trade-off. Here we consider different welfare functions that
rationalize different preferences about this trade-off. With this in mind we propose the
following function

W σ̂ =

∫
S

E0

[
∞∑
t=0

βtv
(
xt
(
a0, e

t
))] 1−σ̂

1−σ

dλ0


1−σ
1−σ̂

,

where λ0 is the initial distribution over individual states (a0, e0). Following Benabou (2002),
we call σ̂ the planner’s degree of inequality aversion. First note that if σ̂ = σ (the agents’
degree of risk aversion), maximizing W σ is equivalent to maximizing the utilitarian welfare
function. If σ̂ = 0, then maximizing W 0 is akin to maximizing efficiency as in Section 5.1,
that is, the planner has no redistributive concerns and focuses instead in the reduction of
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distortions and the provision of insurance.45 Finally, it is easy to see that

lim
σ̂→∞

W σ̂ = min
(a0,e0)

E0

[
U
({
xt
(
a0, e

t
)})]

.

Hence, by choosing different levels for σ̂ we can place different weights on the equality
versus efficiency trade-off, from the extreme of completely ignoring equality (σ̂ = 0), passing
through the utilitarian welfare function (σ̂ = σ), and in the limit reaching the Rawlsian
welfare function (σ̂ → ∞). Table 8 displays the results for different levels of σ̂.

Table 8: Controlling the degree of inequality aversion

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

Degree of Inequality Aversion. Benchmark: σ̂ = 2

σ̂ = 0.0 0 53.0 27.5 10.2 40.3 4.6 0.0 0.2 4.5
σ̂ = 1.0 35 69.3 31.0 15.6 -45.4 12.8 -2.4 0.9 14.6
σ̂ = 2.0∗ 51 61.2 35.4 16.8 -59.4 13.2 -4.3 1.8 16.1
σ̂ = 3.0 53 61.2 37.5 17.8 -65.4 13.1 -5.0 2.2 16.6
σ̂ = 4.0 54 61.5 38.5 18.4 -68.9 13.0 -5.5 2.4 16.7
σ̂ = 5.0 55 61.5 39.2 18.6 -70.9 12.9 -5.8 2.6 16.9

Note: When σ̂ = 2 = σ the welfare function is utilitarian; this is the solution plotted in Figure 14. The
values for T/Y and B/Y are the ones from the final steady state. For the welfare decomposition, we use
the utilitarian welfare function for comparability.

When σ̂ = 0 the planner has no redistributive motive and, accordingly, t∗ = 0. The
benchmark result that capital income taxes should be held fixed at the upper bound for
the initial periods is inherently linked to the redistributive motive of the planner. It follows
that higher σ̂ imply higher t∗’s (lower lump-sum-to-output ratios and higher debt-to-output
ratios). Otherwise, overall, specially for σ̂ ≥ 2, the results do not change significantly with
changes in σ̂. In particular, the final levels of capital and labor income taxes and the
composition of the welfare gains are remarkably similar.

8.2 Labor-supply and intertemporal elasticities

One parameter, σ, determines three important aspects of our benchmark experiment: the
agents’ intertemporal elasticity of substitution and relative risk aversion, and the planner’s
degree of inequality aversion. Table 9 contains the results for other choices of this parameter
and also for different levels of Frisch elasticity.
45Proposition 8 in Appendix B formalizes this claim.
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Table 9: Risk Aversion and Frisch Elasticity (Benchmark: σ = 2, κ = 0.72)

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

σ = 1.0 14 36.0 32.0 11.8 -8.9 3.5 -2.3 0.8 5.0
σ = 3.0 83 91.8 36.5 21.1 -85.6 22.6 -2.5 1.7 23.5
κ = 0.5 49 35.2 49.0 22.0 -83.6 23.1 -8.2 4.9 27.7
κ = 1.0 50 66.5 27.0 13.3 -41.5 11.2 -2.1 0.2 13.5

Benchmark 51 61.2 35.4 16.8 -59.4 13.2 -4.3 1.8 16.1

When σ is reduced from 2 to 1, the planner’s inequality aversion is reduced and, accord-
ingly, capital income taxes are kept at the upper bound for less periods (t∗ goes from 51

to 14). Moreover, the agents’ intertemporal elasticity of substitution increases and their
risk aversion is reduced which implies that long-run capital income taxes lead to, at the
same time, higher distortions and less benefits. It follows that the optimal long-run capital
income tax is lower. This also leads to a higher proportion of welfare gains coming from the
level effect and less coming from redistribution. The opposite happens when σ is increased
to 3. Intuitively, a higher Frisch elasticity implies a lower optimal labor income tax and
a higher associated level effect. Note that these results are in line with the propositions
established in Section 1.

8.3 Wealth effects and preference shocks

In the benchmark calibration, productivity shocks affect the amount of labor supplied by
the agents, an effect that is magnified by the lack of wealth effects. It is possible to remove
this effect and make labor supply independent of the productivity shock, by introducing
a concomitant shock to the disutility of labor, i.e. setting χe = χ0e. We recalibrate the
model under this alternative assumption and compute the optimal policy which we present
in Table 10. Note that the optimal policy and welfare decomposition are very similar. The
main difference being the lower long-run capital income taxes and higher t∗. As discussed
in Section 4.4, variations in these features of capital income taxes are close substitutes.

Table 10: Benchmark versus Calibration with Preference Shocks

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

Pref. Shocks 57 29.6 40.4 16.5 -74.4 16.0 -7.2 2.5 21.9
Benchmark 51 61.2 35.4 16.8 -59.4 13.2 -4.3 1.8 16.1
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9 Conclusion
In this paper we quantitatively characterize the solution to the Ramsey problem in the
standard incomplete markets model. We find that even though the planner has the ability
to obtain all revenue via non distortive lump-sum taxes, it chooses instead to tax capital and
labor income at levels roughly consistent with the prevailing ones in the US. Moreover, we
show that to achieve redistribution, it is optimal for the planner to set capital income taxes
at the imposed upper bound of 100 percent for several years. By decomposing the welfare
gains we diagnose that, relative to the current US tax system, this policy exacerbates the
amount of distortions to agents’ decisions. On the other hand, it leads to a substantial
amount of redistribution and insurance, with the former being significantly more relevant
for the welfare gains associated with the optimal policy.

Finally, we do not view our results as a final answer to our initial question: “how should
governments conduct fiscal policy in the presence of inequality and individual risk?” The
model we use abstracts from important aspects of reality, as any useful model must, and
we miss some important dimensions. For instance, in the model studied above, an agent’s
productivity is entirely a matter of luck. It would be interesting to understand the effects of
allowing for human capital accumulation. We also assume the government has the ability to
fully commit to future policies. Relaxing this assumption could lead to interesting insights.
The model also abstracts from international financial markets; capital income taxes as high
as the ones we find optimal in this paper are unlikely to survive if agents are able to move
their assets overseas. We also abstract from life-cycle issues and have a relatively simple
tax structure. Our method, however, could be used to approximate the solution to Ramsey
problems in more elaborate models, the main constraint being computational power and
how long it would take to compute one transition.
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Appendix
This appendix presents concise versions of the proofs. Extensive versions with more details
are contained in a separate Online Appendix which can be found on our websites.46

A Proofs for two-period economies

A.1 Risk economy

Define τ kR ≡ rτ k/ (1 + r). Six equations determine a tax distorted equilibrium (K,nL, nH , r, w;

τn, τ kR, T ) according to Definition 1: the first order conditions of the agent’s problem (one
intertemporal and two intratemporal), the first order conditions of the firm’s problem

r = fK (K,N) , and w = fN (K,N) , where N = πeLnL + (1− π) eHnH (9.1)

and the government’s budget constraint. Using equation (9.1) to substitute out for r
and w we are left with a system of four equations that any vector

(
K,nL, nH , τ

n, τ kR, T
)

of equilibrium values must satisfy. The two degrees of freedom are a result of the fact
that the planner has three instruments

(
τn, τ kR, T

)
that are restricted by one equation, the

government’s budget constraint. Defining welfare by

W ≡ u (ω −K, n̄) + βE
[
u
(
(1− τn) fN (K,N) eini +

(
1− τ kR

)
fK (K,N)K + T

)
, ni
]

and totally differentiating the four equilibrium equations together with this definition and
making the appropriate simplifications using Assumption 1 we obtain the following equation
(the algebra is tedious and, therefore, suppressed47):

dW = Θndτn +Θkdτ kR,

where Θn and Θk are complicated functions of equilibrium variables.48

Lemma 2 Under Assumption 1, in equilibrium nH > nL and uc (cL, nL) > uc (cH , nH).

The proof of this Lemma is contained in the Online Appendix.
46http://www.dyrda.info/ or http://sites.google.com/site/marcelozouainpedroni/
47Mathematica codes that compute all the algebraic steps are available on our websites.
48Here are the exact formulas:

Θk ≡ fKKUc

Φ

{
fNfKNN [(1− τn) (Vc − Uc) + τnκUc] + τkRfK (fN + fKNKκ)Uc

}
.

Θn ≡ fNN

(1− τn)Φ
{
(
1− τkR

)
f2
KfNK

[
(1− τn)

(
Ucc (Uc − Vc) + τkR (Vcc − Ucc)Uc

)
−
(
1− τkR

)
τnκUccUc

]
+ fN [(1− τn) (Vc − Uc) + τnκUc]

[(
1− τkR

)
fKNNUc −Ku0

cc

]
+
(
1− τkR

)
τkRfKNfKKκU2

c },
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Proof of Proposition 1. First note that the optimal tax system must satisfy Θn = 0 and
Θk = 0, otherwise there would exist variations in

(
τn, τ kR

)
∈ (−∞, 1)2 that would increase

welfare. Θk = 0 simplifies to θk1 + θk2τ
n + θk3τ

k
R = 0 where

θk1 ≡ fNfKNN (Vc − Uc) , θk2 ≡ fNfKNN ((1 + κ)Uc − Vc) , and θk3 ≡ fK (fN + κfKNK)Uc.

Solving this equation for τ kR, substituting it in Θn = 0 and simplifying entails

Vc (1− τn)− Uc (1− (1 + κ) τn) = 0.

Solving for τn we obtain equation (1.1) and substituting it back in the equation for τ kR we
obtain τ kR = 0; and, therefore, τ k = 0. This is the only pair

(
τn, τ kR

)
∈ (−∞, 1)2 that solves

the system Θn = 0 and Θk = 0. The fact that the optimal level of τn > 0 follows from
Lemma 2.

A.2 Inequality economy

The proof of Proposition 2 is entirely analogous and for that reason suppressed here. It
can be found in the Online Appendix.

B Welfare decomposition

Proof of Proposition 3. First note that without risk et = {e0}, so that

λt
(
a0, e

t
)
= λ0 (a0, e0) , and xt

(
a0, e

t
)
= xt (a0, e0) ,

for all (a0, e0). It follows from (4.4) that,

U ({x̄t (a0, e0)}) = U ({xt (a0, e0)}) ,

and, therefore,
η (a0, e0) = 1,

where

Uc ≡ β [πuc (cL, nL) + (1− π)uc (cH , nH)] , Ucc ≡ β [πucc (cL, nL) + (1− π)ucc (cH , nH)] ,

Vc ≡ β
[
πuc (cL, nL)

eLnL

N
+ (1− π)uc (cH , nH)

eHnH

N

]
,

Vcc ≡ β
[
πucc (cL, nL)

eLnL

N
+ (1− π)ucc (cH , nH)

eHnH

N

]
,

Φ ≡
(
1− τkR

) (
fKfNfKNKN ((1− τn) (Vcc − Ucc) + τnκUcc) + (fN + fKNKκ) f2

KKUcc − fNfKNNUc

)
+ (fN + fKNKκ)Ku0

cc.
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for all (a0, e0). Hence, we obtain

U
({
X̄t

})
=

∞∑
t=0

βtu
(
X̄t

) (4.6)
=

∞∑
t=0

βtv

(∫
x̄t (a0, e0) dλt (a0, e0)

)
(4.5)
=

∞∑
t=0

βtv

(∫
xt
(
a0, e

t
)
dλt
(
a0, e

t
))

=
∞∑
t=0

βtv (Xt) = U ({Xt}) ,

which establishes the result. Next, without inequality, we have that x̄jt (a0, e0) = X̄t for all
t and all (a0, e0).

Proof of Proposition 4. Note that

U (a {xt}) = a1−σU ({xt}) . (9.2)

Suppressing the dependence on (a0, e0), it follows that∫
E0

[
U
({

xRt
})]

dλ0
(4.4)
=

∫
U
({

x̄Rt
})

dλ0
(4.8)
= U

((
1− pRineq

) {
X̄R
t

}) (9.2)
=
(
1− pRineq

)1−σ
U
({

X̄R
t

})
(4.7)
=
(
1− pRineq

)1−σ
U
((
1− pRrisk

) {
XR
t

}) (9.2)
=
((
1− pRineq

) (
1− pRrisk

))1−σ
U
({

XR
t

})
(4.3)
=
((
1− pRineq

) (
1− pRrisk

))1−σ
U
(
(1 + ∆L)

{
XNR
t

})
(9.2)
=
(
(1 + ∆L)

(
1− pRineq

) (
1− pRrisk

))1−σ
U
({

XNR
t

})
(9.2)
=

(
(1 + ∆L)

(
1− pRineq

) (1− pRrisk
)(

1− pNRrisk
))1−σ

U
((
1− pNRrisk

) {
XNR
t

})
(4.7)
=
(
(1 + ∆L) (1 + ∆I)

(
1− pRineq

))1−σ
U
({

X̄NR
t

})
(9.2)
=

(1 + ∆L) (1 + ∆I)

(
1− pRineq

)
(
1− pNRineq

)
1−σ

U
((
1− pNRineq

) {
X̄NR
t

})
(4.8)
= ((1 + ∆L) (1 + ∆I) (1 + ∆R))

1−σ
∫

U
({

x̄NRt
})

dλ0

(4.7)
= ((1 + ∆L) (1 + ∆I) (1 + ∆R))

1−σ
∫

E0

[
U
({

xNRt
})]

dλ0

(9.2)
=

∫
E0

[
U
(
(1 + ∆R) (1 + ∆I) (1 + ∆L)

{
xNRt

})]
dλ0.

The result, then, follows from the definition of ∆ in equation (4.2).

Proposition 8 If the certainty equivalents are constant over time, i.e. x̄jt (a0, e0) =

x̄j (a0, e0) for j = R,NR, then, maximizing W 0 =
(∫

E0 [U ({xt (a0, et)})]
1

1−σ dλ0 (a0, e0)
)1−σ

is equivalent to maximizing (1 + ∆L) (1 + ∆I).
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Proof. First note that, for j = R,NR,

E0

[
U
({

xjt

})] 1
1−σ (4.4)

= U
({

x̄j
}) 1

1−σ =

( ∞∑
t=0

βt
(
x̄j
)1−σ) 1

1−σ

=

(
1

1− β

) 1
1−σ

x̄j , (9.3)

and, therefore
∫

E0

[
U
({

xRt
})] 1

1−σ dλ0
(9.3)
=

∫ (
1

1− β

) 1
1−σ

x̄Rdλ0
(4.6)
=

(
1

1− β

) 1
1−σ

X̄R = U
({

X̄R
}) 1

1−σ

(4.7)
= U

((
1− pRrisk

) {
XR
t

}) 1
1−σ =

(
1− pRrisk

)
U
({

XR
t

}) 1
1−σ

(4.3)
=
(
1− pRrisk

)
U
(
(1 + ∆L)

{
XNR
t

}) 1
1−σ

=

(
1− pRrisk

)(
1− pNRrisk

) (1 + ∆L)U
((
1− pNRrisk

) {
XNR
t

}) 1
1−σ

(4.7)
= (1 +∆I) (1 + ∆L)U

({
X̄NR

}) 1
1−σ

= (1 +∆I) (1 + ∆L)

(
1

1− β

) 1
1−σ

X̄NR

(4.6)
= (1 +∆I) (1 + ∆L)

∫ (
1

1− β

) 1
1−σ

x̄NRdλ0

(9.3)
= (1 +∆I) (1 + ∆L)

∫
E0

[
U
({

xNRt
})] 1

1−σ dλ0

which establishes the result.

C Proofs for complete market economies

The proofs follow straight-forwardly the approach introduced by Werning (2007). Hence,
for details on the logic behind the procedure we refer the reader to Online Appendix, where
we present more detailed versions of the proofs. Here we focus mainly on the parts that
comprise our value added. We depart from Werning (2007) in following ways: we use the
GHH utility function (whereas he studies the separable and Cobb-Douglas cases), we do not
allow the Ramsey planner to choose time zero policies and impose an upper bound of 1 for
capital income taxes. These departures make the Ramsey planner’s problem comparable to
our benchmark experiment. The restriction on time zero policies is particularly important
because it prevents the planner from confiscating the (potentially unequal) initial capital
levels eliminating the corresponding redistribution motives.

Consider Economy 4 as described in Section 7. For simplicity, we assume that agents are
divided into a finite number of types i ∈ I of relative size πi. Type i has an initial asset
position of ai,0 and a productivity level of ei. Let pt denote the price of the consumption
good in period t in terms of period 0. Since markets are complete we can write down the
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present value budget constraint of the agent (remember that τ c is a parameter),

∞∑
t=0

pt ((1 + τ c) ci,t + ai,t+1) ≤
∞∑
t=0

pt ((1− τnt )wteini,t +Rtai,t + Tt) ,

where Rt ≡ 1+
(
1− τ kt

)
rt. Rule out arbitrage opportunities by setting pt = Rt+1pt+1, and

define T ≡
∑∞

t=0 ptTt. Then, the budget constraint simplifies to

∞∑
t=0

pt ((1 + τ c) ci,t − (1− τnt )wteini,t) ≤ R0ai,0 + T . (9.4)

Similarly, the government’s budget constraint simplifies to

R0B0 + T +
∑
t

ptG =
∑
t

pt
(
τ cCt + τnt wtNt + τ kt rtKt

)
. (9.5)

The resource constraint is given by

Ct +G+Kt+1 = f (Kt, Nt) , for all t ≥ 0. (9.6)

Definition 6 Given {ai,0}, K0, B0 and
(
τn0 , τ

k
0 , T0

)
, a competitive equilibrium is a policy

{τnt , τ kt , Tt}∞t=1, a price system {pt, wt, rt}∞t=0, and an allocation {ci,t, ni,t, Kt+1}∞t=0, such
that: (i) agents choose {ci,t, ni,t}∞t=0 to maximize utility subject to budget constraint (9.4)

taking policies and prices (that satisfy pt = Rt+1pt+1) as given; (ii) firms maximize profits;
(iii) the government’s budget constraint (9.5) holds; and (iv) markets clear: the resource
constraints (9.6) hold.

Given aggregate levels Ct and Nt, individual consumption and labor supply levels can be
found by solving the following static subproblem

U (Ct, Nt;φ) ≡ max
ci,t,ni,t

∑
i

πiφiu (ci,t, ni,t) s.t.
∑
i

πici,t = Ct and
∑
i

πieini,t = Nt

(9.7)
where u is given by equation (3.1), for some vector φ ≡ {φi} of market weights φi ≥ 0. Let
cmi,t (Ct, Nt;φ), and nmi,t (Ct, Nt;φ) be the argmax of this problem. It can be shown that49

49Where constants are defined as follows:

ωc
i ≡ (φi)

1
σ∑

j πj (φj)
1
σ

, ωn
i ≡ (ei)

κ∑
j πj (ej)

1+κ , Ωc ≡

(∑
i

πi (φi)
1
σ

)σ

, and Ωn ≡

∑
j

πj (ej)
1+κ

− 1
κ

61



cmi,t (Ct, Nt;φ) = ωciCt + χ
κ

1 + κ

(
(ωni )

1+κ
κ − ωciΩ

n
)
(Nt)

1+κ
κ

nmi,t (Ct, Nt;φ) = ωni Nt

U (Ct, Nt;φ) =
Ωc

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)1−σ

Then, implementability constraints can be written as

∞∑
t=0

βt(UC (Ct, Nt;φ) c
m
i,t (Ct, Nt;φ) + UN (Ct, Nt;φ) ein

m
i,t (Ct, Nt;φ)) (9.8)

= UC (C0, N0;φ)

(
R0ai,0 + T

1 + τ c

)
for all i ∈ I

Proposition 9 An aggregate allocation {Ct, Nt, Kt+1}∞t=0 can be supported by a competitive
equilibrium if and only if the resource constraints (9.6) hold and there exist market weights
φ and a lump-sum tax T so that the implementability conditions (9.8) hold for all i ∈ I.
Individual allocations can then be computed using functions cmi,t and nmi,t, and prices and
taxes can be computed using the usual equilibrium conditions.

The Ramsey problem is that of choosing policies
{
τnt , τ

k
t , Tt

}∞
t=1

, taking {ai,0}, K0, B0

and
(
τn0 , τ

k
0 , T0

)
as given, to maximize a weighted sum of the individual utilities,

∞∑
t=0

βtπiλiu (ci,t, ni,t) , (9.9)

where {λi} are the welfare weights normalized so that
∑

i πiλi = 1 with λi ≥ 0, subject to
allocations and policies being a part of a competitive equilibrium and τ kt ≤ 1 for all t ≥ 1.

Note that in equilibrium, it must be that UC (t) = β
(
1 +

(
1− τ kt+1

)
rt+1

)
UC (t+ 1), so

that
UC (t) ≥ βUC (t+ 1) , (9.10)

is equivalent to τ kt+1 ≤ 1. Moreover, note that τ k0 and T0 have not been substituted out of
the implementability constraint. The fact that τn0 is given together with the equilibrium
condition (1− τn0 )w0 = −UN (0) /UC (0) is equivalent to

N0 = N̄0, (9.11)
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where N̄0 is defined implicitly as a function of variables given to the Ramsey planner,

(1− τn0 ) fN
(
K0, N̄0

)
= Ωnχ

(
N̄0

) 1
κ .

Finally, we can use Proposition 9 to rewrite the Ramsey problem as choosing {Ct,
Nt+1, Kt+1}∞t=0, T , and φ to maximize (9.9) subject to (9.6) for all t ≥ 0, (9.8) for all
i ∈ I with multiplier µi, (9.10) for all t ≥ 0 with multiplier ηt, and (9.11). Equivalently,
we can write it as that of solving the following auxiliary problem

max
{Ct,Nt+1,Kt+1}∞t=0,T,φ

∞∑
t=0

βtW (Ct, Nt;φ, µ, λ)− UC (C0, N0;φ)
∑
i∈I

πiµi

(
R0ai,0 + T

1 + τ c

)
,

subject to (9.6) for all t ≥ 0, (9.10) for all t ≥ 0, and (9.11), where

W (Ct, Nt;φ, µ, λ) ≡
∑
i

πi{λiu
(
cmi,t (Ct, Nt;φ) , n

m
i,t (Ct, Nt;φ)

)
+ µi

(
UC (Ct, Nt;φ) c

m
i,t (Ct, Nt;φ) + UN (Ct, Nt;φ) ein

m
i,t (Ct, Nt;φ)

)
}.

With some algebra it can be shown that50

W (Ct, Nt;φ, µ, λ) =
1

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)−σ

∗
(
ΦCt − (Φ + (1− σ)Ψ)Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)
(9.12)

Define R∗
t ≡ 1 + rt and

η−1 ≡
R0

β (1 + τ c)

∑
i

πiµiai,0,

and first order conditions (for the following proofs we need only necessary conditions)
50Where constants are defined as follows:

Φ ≡ (Ωc)
σ−1
σ

∑
i

πi(φi)
1
σ

(
λi

φi
+ (1− σ)µi

)
, and Ψ ≡ Ωc

κ

∑
j

πjµjejω
n
j .
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together with equilibrium conditions imply the following equations51

∑
i

πiµi = 0 (9.13)

τnt + τ c

1 + τ c
=

ΨΘt

ΦΘt +Ψ(σ +Θt) + Υtσ (βηt−1 − ηt)
, for t ≥ 1 (9.14)

Rt+1

R∗
t+1

=
ΦΘt+1 +Ψσ +Υt+1σ (βηt − ηt+1)

ΦΘt +Ψσ +Υtσ (βηt−1 − ηt)

Θt

Θt+1

, for t ≥ 0 (9.15)

Note that Υt > 0 and Θt > 0, for all t ≥ 0.

C.1 Economy 2

Lemma 3 If ei = 1 for all i ∈ I, then Ψ = 0 and Φ > 0.

Proof. If ei = 1 for all i ∈ I, then it follows from the definition of Ψ that

Ψ =
Ωc

κ

∑
j πjµj (ej)

1+κ∑
j πj (ej)

1+κ =
Ωc

κ

∑
j πjµj∑
j πj

= 0,

where the last equality follows from equation (9.13). Since Ψ = 0, it follows from equation
(9.12) that

W (Ct, Nt;φ, µ, λ) =
Φ

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)1−σ

.

If Φ ≤ 0 it would be optimal to set Ct = 0 for all t ≥ 0 which cannot be a solution to the
initial Ramsey problem.

Proof of Proposition 5. Using Lemma 3, from equation (9.14) it follows that

τnt = −τ c, for t ≥ 1.

Next, suppose ηt = 0, for all t ≥ 0. Then, it follows from (9.15) that τ k1 < 1 if

− 1

β

ΦΘ0

Υ0σ
≡ P1 < η−1 < M1 ≡

1

β

(R∗
1 − 1)ΦΘ0

Υ0σ
,

and that τ kt = 0 for t ≥ 2. Hence, if P1 < η−1 < M1, the constraints will in fact never be
binding. Now, suppose ηt > 0, for t ≤ t∗ − 2 and ηt = 0, for all t ≥ t∗ − 1, then it follows
51Where Υt ≡ Ωc/(1− σ)Ωnχ κ

1+κ (Nt)
1+κ
κ .
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from (9.15) that τ kt∗ < 1 if

−
t∗∑
τ=1

1

βτ
ΦΘτ−1

Υτ−1σ
≡ Pt∗ < η−1 < Mt∗ ≡

t∗∑
τ=1

1

βτ

(∏t∗

t=τ R
∗
t − 1

)
ΦΘτ−1

Υτ−1σ
,

and that τ kt = 0 for t ≥ t∗+1. The result follows from the fact that η−1 is finite, limt→∞ Pt =

−∞ and limt→∞Mt = ∞.

C.2 Economy 3

Proof of Proposition 6. In this economy there is no heterogeneity in initial levels of
asset, i.e. ai,0 = a0 for all i ∈ I. Then it follows that

η−1 =
R0

β (1 + τ c)

∑
i

πiµiai,0 =
R0

β (1 + τ c)
a0
∑
i

πiµi = 0

where the last equality follows from equation (9.13). Since here we assume that τ kt does not
have to be bounded by 1, it follows that ηt = 0 for all t ≥ 1. Then, equation (7.1) follows
directly from equation (9.14), (7.2) from its derivative with respect to Θt, and (7.3) from
equations (9.14) and (9.15).

C.3 Economy 4

Proof of Proposition 7. Equation (7.3) can be established for all t ≥ 1, by substituting
(9.14) into (9.15). The existence of a t∗ such that ηt > 0, for t < t∗ − 1 and ηt = 0, for all
t ≥ t∗ − 1, follows from a very similar logic to the one used in the proof of Proposition 5,
which we suppress here.52 Hence, for t ≥ t∗ we can obtain τnt by using (7.1), which follows
from (9.14) with ηt = 1. For the same time period τ kt can then be found by using (7.3).
Now, having τnt∗ we can use the fact that τ kt = 1 and (7.3) moving backwards to obtain τnt
for t < t∗.
52With

Pt∗ ≡ −
t∗∑

τ=1

1

βτ

ΦΘτ−1 +Ψσ

Υτ−1σ
, and Mt∗ ≡

t∗∑
τ=1

1

βτ

(∏t∗

t=τ R
∗
t − 1

)
ΦΘτ−1 +

(
Θτ−1

Θt∗

∏t∗

t=τ R
∗
t − 1

)
Ψσ

Υτ−1σ

65



D Figures

0 20 40 60 80 100 120

1.4

1.6

1.8

2

2.2

(a) Capital
0 20 40 60 80 100 120

0.35

0.4

0.45

(b) Effective labor (H)

0 20 40 60 80 100 120

0.6

0.7

0.8

(c) Output
0 20 40 60 80 100 120

0.3

0.35

0.4

0.45

0.5

0.55

(d) Consumption

0 20 40 60 80 100 120

0.12

0.14

0.16

0.18

0.2

0.22

0.24

(e) Investment
0 20 40 60 80 100 120

0.25

0.3

0.35

0.4

0.45

(f) Cons.-labor composite

0 20 40 60 80 100 120
-0.01

0

0.01

0.02

0.03

0.04

(g) After-tax int. rates
0 20 40 60 80 100 120

0.6

0.7

0.8

(h) After-tax wages

Figure 15: Aggregates: Benchmark
Note: Dashed line: initial stationary equilibrium; Solid line: optimal transition.
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